BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

525 related articles for article (PubMed ID: 33341496)

  • 1. Test-time adaptable neural networks for robust medical image segmentation.
    Karani N; Erdil E; Chaitanya K; Konukoglu E
    Med Image Anal; 2021 Feb; 68():101907. PubMed ID: 33341496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. S-CUDA: Self-cleansing unsupervised domain adaptation for medical image segmentation.
    Liu L; Zhang Z; Li S; Ma K; Zheng Y
    Med Image Anal; 2021 Dec; 74():102214. PubMed ID: 34464837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of pre-trained convolutional neural networks for semantic segmentation of breast tumors in ultrasound.
    Gómez-Flores W; Coelho de Albuquerque Pereira W
    Comput Biol Med; 2020 Nov; 126():104036. PubMed ID: 33059238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks.
    Valverde S; Salem M; Cabezas M; Pareto D; Vilanova JC; Ramió-Torrentà L; Rovira À; Salvi J; Oliver A; Lladó X
    Neuroimage Clin; 2019; 21():101638. PubMed ID: 30555005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prostate segmentation in MRI using a convolutional neural network architecture and training strategy based on statistical shape models.
    Karimi D; Samei G; Kesch C; Nir G; Salcudean SE
    Int J Comput Assist Radiol Surg; 2018 Aug; 13(8):1211-1219. PubMed ID: 29766373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Deep Neural Networks for Semantic Segmentation of Prostate in T2W MRI.
    Khan Z; Yahya N; Alsaih K; Ali SSA; Meriaudeau F
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32503330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supervised Domain Adaptation for Automatic Sub-cortical Brain Structure Segmentation with Minimal User Interaction.
    Kushibar K; Valverde S; González-Villà S; Bernal J; Cabezas M; Oliver A; Lladó X
    Sci Rep; 2019 May; 9(1):6742. PubMed ID: 31043688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient brain tumor image classifier by combining multi-pathway cascaded deep neural network and handcrafted features in MR images.
    Bal A; Banerjee M; Chaki R; Sharma P
    Med Biol Eng Comput; 2021 Aug; 59(7-8):1495-1527. PubMed ID: 34184181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boundary-Weighted Domain Adaptive Neural Network for Prostate MR Image Segmentation.
    Zhu Q; Du B; Yan P
    IEEE Trans Med Imaging; 2020 Mar; 39(3):753-763. PubMed ID: 31425022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PSACNN: Pulse sequence adaptive fast whole brain segmentation.
    Jog A; Hoopes A; Greve DN; Van Leemput K; Fischl B
    Neuroimage; 2019 Oct; 199():553-569. PubMed ID: 31129303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Combination of CNN and Transformer for Dual-Teacher Uncertainty-guided Semi-supervised Medical Image Segmentation.
    Xiao Z; Su Y; Deng Z; Zhang W
    Comput Methods Programs Biomed; 2022 Nov; 226():107099. PubMed ID: 36116398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LMISA: A lightweight multi-modality image segmentation network via domain adaptation using gradient magnitude and shape constraint.
    Jafari M; Francis S; Garibaldi JM; Chen X
    Med Image Anal; 2022 Oct; 81():102536. PubMed ID: 35870297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review.
    Bernal J; Kushibar K; Asfaw DS; Valverde S; Oliver A; Martí R; Lladó X
    Artif Intell Med; 2019 Apr; 95():64-81. PubMed ID: 30195984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constrained-CNN losses for weakly supervised segmentation.
    Kervadec H; Dolz J; Tang M; Granger E; Boykov Y; Ben Ayed I
    Med Image Anal; 2019 May; 54():88-99. PubMed ID: 30851541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation on the generalization of a learned convolutional neural network for MRI reconstruction.
    Huang J; Wang S; Zhou G; Hu W; Yu G
    Magn Reson Imaging; 2022 Apr; 87():38-46. PubMed ID: 34968699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel MRI segmentation method using CNN-based correction network for MRI-guided adaptive radiotherapy.
    Fu Y; Mazur TR; Wu X; Liu S; Chang X; Lu Y; Li HH; Kim H; Roach MC; Henke L; Yang D
    Med Phys; 2018 Nov; 45(11):5129-5137. PubMed ID: 30269345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A self-supervised learning strategy for postoperative brain cavity segmentation simulating resections.
    Pérez-García F; Dorent R; Rizzi M; Cardinale F; Frazzini V; Navarro V; Essert C; Ollivier I; Vercauteren T; Sparks R; Duncan JS; Ourselin S
    Int J Comput Assist Radiol Surg; 2021 Oct; 16(10):1653-1661. PubMed ID: 34120269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Robust and Accurate Deep-learning-based Method for the Segmentation of Subcortical Brain: Cross-dataset Evaluation of Generalization Performance.
    Furuhashi N; Okuhata S; Kobayashi T
    Magn Reson Med Sci; 2021 Jun; 20(2):166-174. PubMed ID: 32389928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.