BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33341508)

  • 1. The use of WHAM-F
    Tipping E; Lofts S; Keller W
    Aquat Toxicol; 2021 Feb; 231():105708. PubMed ID: 33341508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal and proton toxicity to lake zooplankton: a chemical speciation based modelling approach.
    Stockdale A; Tipping E; Lofts S; Fott J; Garmo OA; Hruska J; Keller B; Löfgren S; Maberly SC; Majer V; Nierzwicki-Bauer SA; Persson G; Schartau AK; Thackeray SJ; Valois A; Vrba J; Walseng B; Yan N
    Environ Pollut; 2014 Mar; 186():115-25. PubMed ID: 24370669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Biotic Ligand and Toxic Unit modeling approaches to predict improvements in zooplankton species richness in smelter-damaged lakes near Sudbury, Ontario.
    Khan FR; Keller WB; Yan ND; Welsh PG; Wood CM; McGeer JC
    Environ Sci Technol; 2012 Feb; 46(3):1641-9. PubMed ID: 22191513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal mixture toxicity to aquatic biota in laboratory experiments: application of the WHAM-FTOX model.
    Tipping E; Lofts S
    Aquat Toxicol; 2013 Oct; 142-143():114-22. PubMed ID: 23994673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WHAM-F
    Tipping E; Lofts S; Stockdale A
    Aquat Toxicol; 2023 May; 258():106503. PubMed ID: 37001198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic analysis of freshwater metal toxicity with WHAM-F
    Tipping E; Stockdale A; Lofts S
    Aquat Toxicol; 2019 Jul; 212():128-137. PubMed ID: 31103734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing WHAM-FTOX with laboratory toxicity data for mixtures of metals (Cu, Zn, Cd, Ag, Pb).
    Tipping E; Lofts S
    Environ Toxicol Chem; 2015 Apr; 34(4):788-98. PubMed ID: 25318827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Species sensitivity analysis of heavy metals to freshwater organisms.
    Xin Z; Wenchao Z; Zhenguang Y; Yiguo H; Zhengtao L; Xianliang Y; Xiaonan W; Tingting L; Liming Z
    Ecotoxicology; 2015 Oct; 24(7-8):1621-31. PubMed ID: 26104218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of industrial metals on wild fish populations along a metal contamination gradient.
    Pyle GG; Rajotte JW; Couture P
    Ecotoxicol Environ Saf; 2005 Jul; 61(3):287-312. PubMed ID: 15922796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioavailability and uptake of smelter emissions in freshwater zooplankton in northeastern Washington, USA lakes using Pb isotope analysis and trace metal concentrations.
    Child AW; Moore BC; Vervoort JD; Beutel MW
    Environ Pollut; 2018 Jul; 238():348-358. PubMed ID: 29574359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological sensitivity of freshwater macroinvertebrates to heavy metals.
    Malaj E; Grote M; Schäfer RB; Brack W; von der Ohe PC
    Environ Toxicol Chem; 2012 Aug; 31(8):1754-64. PubMed ID: 22553143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper and zinc, but not other priority toxic metals, pose risks to native aquatic species in a large urban lake in Eastern China.
    Fu Z; Wu F; Chen L; Xu B; Feng C; Bai Y; Liao H; Sun S; Giesy JP; Guo W
    Environ Pollut; 2016 Dec; 219():1069-1076. PubMed ID: 27622839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of metals on zooplankton abundance and distribution in the coast of southwestern Taiwan.
    Ju YR; Lo WT; Chen CF; Chen CW; Huang ZL; Dong CD
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):33722-33731. PubMed ID: 29730755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of diffusive gradients in thin films (DGT) and simultaneously extracted metals (SEM) for evaluating bioavailability of metal contaminants in the sediments of Taihu Lake, China.
    Zhang Y; Yang J; Simpson SL; Wang Y; Zhu L
    Ecotoxicol Environ Saf; 2019 Nov; 184():109627. PubMed ID: 31509782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Daphniid zooplankton assemblage shifts in response to eutrophication and metal contamination during the Anthropocene.
    Rogalski MA; Leavitt PR; Skelly DK
    Proc Biol Sci; 2017 Jul; 284(1859):. PubMed ID: 28747475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution, diffusive fluxes, and toxicity of heavy metals and PAHs in pore water profiles from the northern bays of Taihu Lake.
    Lei P; Zhang H; Shan B; Zhang B
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):22072-22083. PubMed ID: 27541153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Sensitivity of the hog slater Asellus aquaticus to the toxic effects of heavy metals during different periods of ontogenesis, during different seasons and at different temperatures].
    Pashkova IM; Korotneva NV
    Tsitologiia; 2000; 42(6):578-80. PubMed ID: 10953864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cadmium exposure on feeding of freshwater planktonic crustaceans.
    Gulati RD; Bodar CW; Schuurmans AL; Faber JA; Zandee DI
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1988; 90(2):335-40. PubMed ID: 2902994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity of proton-metal mixtures in the field: linking stream macroinvertebrate species diversity to chemical speciation and bioavailability.
    Stockdale A; Tipping E; Lofts S; Ormerod SJ; Clements WH; Blust R
    Aquat Toxicol; 2010 Oct; 100(1):112-9. PubMed ID: 20701986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probabilistic ecological risk assessment of heavy metals using the sensitivity of resident organisms in four Korean rivers.
    Park J; Lee S; Lee E; Noh H; Seo Y; Lim H; Shin H; Lee I; Jung H; Na T; Kim SD
    Ecotoxicol Environ Saf; 2019 Nov; 183():109483. PubMed ID: 31362159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.