These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
461 related articles for article (PubMed ID: 33341616)
21. Bark beetle effects on fuel profiles across a range of stand structures in Douglas-fir forests of Greater Yellowstone. Donato DC; Harvey BJ; Romme WH; Simard M; Turner MG Ecol Appl; 2013 Jan; 23(1):3-20. PubMed ID: 23495632 [TBL] [Abstract][Full Text] [Related]
22. Delayed conifer mortality after fuel reduction treatments: interactive effects of fuel, fire intensity, and bark beetles. Youngblood A; Grace JB; McIver JD Ecol Appl; 2009 Mar; 19(2):321-37. PubMed ID: 19323193 [TBL] [Abstract][Full Text] [Related]
23. Influences of secondary disturbances on lodgepole pine stand development in Rocky Mountain National Park. Sibold JS; Veblen TT; Chipko K; Lawson L; Mathis E; Scott J Ecol Appl; 2007 Sep; 17(6):1638-55. PubMed ID: 17913129 [TBL] [Abstract][Full Text] [Related]
24. The propagule doesn't fall far from the tree, especially after short-interval, high-severity fire. Gill NS; Hoecker TJ; Turner MG Ecology; 2021 Jan; 102(1):e03194. PubMed ID: 32910502 [TBL] [Abstract][Full Text] [Related]
25. Mountain pine beetle and forest carbon feedback to climate change. Kurz WA; Dymond CC; Stinson G; Rampley GJ; Neilson ET; Carroll AL; Ebata T; Safranyik L Nature; 2008 Apr; 452(7190):987-90. PubMed ID: 18432244 [TBL] [Abstract][Full Text] [Related]
26. Influence of recent bark beetle outbreak on fire severity and postfire tree regeneration in montane Douglas-fir forests. Harvey BJ; Donato DC; Romme WH; Turner MG Ecology; 2013 Nov; 94(11):2475-86. PubMed ID: 24400499 [TBL] [Abstract][Full Text] [Related]
27. Can wildland fire management alter 21st-century subalpine fire and forests in Grand Teton National Park, Wyoming, USA? Hansen WD; Abendroth D; Rammer W; Seidl R; Turner MG Ecol Appl; 2020 Mar; 30(2):e02030. PubMed ID: 31674698 [TBL] [Abstract][Full Text] [Related]
28. Assessing fire impacts on the carbon stability of fire-tolerant forests. Bennett LT; Bruce MJ; Machunter J; Kohout M; Krishnaraj SJ; Aponte C Ecol Appl; 2017 Dec; 27(8):2497-2513. PubMed ID: 28921765 [TBL] [Abstract][Full Text] [Related]
29. Forest structure and climate mediate drought-induced tree mortality in forests of the Sierra Nevada, USA. Restaino C; Young DJN; Estes B; Gross S; Wuenschel A; Meyer M; Safford H Ecol Appl; 2019 Jun; 29(4):e01902. PubMed ID: 31020735 [TBL] [Abstract][Full Text] [Related]
30. Changes to the N cycle following bark beetle outbreaks in two contrasting conifer forest types. Griffin JM; Turner MG Oecologia; 2012 Oct; 170(2):551-65. PubMed ID: 22492169 [TBL] [Abstract][Full Text] [Related]
31. Climate influences on whitebark pine mortality from mountain pine beetle in the Greater Yellowstone Ecosystem. Buotte PC; Hicke JA; Preisler HK; Abatzoglou JT; Raffa KF; Logan JA Ecol Appl; 2016 Dec; 26(8):2505-2522. PubMed ID: 27907251 [TBL] [Abstract][Full Text] [Related]
32. Warming increased bark beetle-induced tree mortality by 30% during an extreme drought in California. Robbins ZJ; Xu C; Aukema BH; Buotte PC; Chitra-Tarak R; Fettig CJ; Goulden ML; Goodsman DW; Hall AD; Koven CD; Kueppers LM; Madakumbura GD; Mortenson LA; Powell JA; Scheller RM Glob Chang Biol; 2022 Jan; 28(2):509-523. PubMed ID: 34713535 [TBL] [Abstract][Full Text] [Related]
33. Less fuel for the next fire? Short-interval fire delays forest recovery and interacting drivers amplify effects. Braziunas KH; Kiel NG; Turner MG Ecology; 2023 Jun; 104(6):e4042. PubMed ID: 36976178 [TBL] [Abstract][Full Text] [Related]
34. Spatiotemporal variability of fire effects on soil carbon and nitrogen: A global meta-analysis. Li J; Pei J; Liu J; Wu J; Li B; Fang C; Nie M Glob Chang Biol; 2021 Sep; 27(17):4196-4206. PubMed ID: 34101948 [TBL] [Abstract][Full Text] [Related]
35. Fixing a snag in carbon emissions estimates from wildfires. Stenzel JE; Bartowitz KJ; Hartman MD; Lutz JA; Kolden CA; Smith AMS; Law BE; Swanson ME; Larson AJ; Parton WJ; Hudiburg TW Glob Chang Biol; 2019 Nov; 25(11):3985-3994. PubMed ID: 31148284 [TBL] [Abstract][Full Text] [Related]
36. Successful Colonization of Lodgepole Pine Trees by Mountain Pine Beetle Increased Monoterpene Production and Exhausted Carbohydrate Reserves. Roth M; Hussain A; Cale JA; Erbilgin N J Chem Ecol; 2018 Feb; 44(2):209-214. PubMed ID: 29302834 [TBL] [Abstract][Full Text] [Related]
37. Burn me twice, shame on who? Interactions between successive forest fires across a temperate mountain region. Harvey BJ; Donato DC; Turner MG Ecology; 2016 Sep; 97(9):2272-2282. PubMed ID: 27859087 [TBL] [Abstract][Full Text] [Related]
39. Tree mortality and carbon emission as a function of wildfire severity in south-eastern Australian temperate forests. Volkova L; Paul KI; Roxburgh SH; Weston CJ Sci Total Environ; 2022 Dec; 853():158705. PubMed ID: 36099944 [TBL] [Abstract][Full Text] [Related]
40. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon. Agne MC; Shaw DC; Woolley TJ; Queijeiro-BolaƱos ME PLoS One; 2014; 9(9):e107532. PubMed ID: 25221963 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]