These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
461 related articles for article (PubMed ID: 33341616)
41. Seed release in serotinous lodgepole pine forests after mountain pine beetle outbreak. Teste FP; Lieffers VJ; Landhausser SM Ecol Appl; 2011 Jan; 21(1):150-62. PubMed ID: 21516894 [TBL] [Abstract][Full Text] [Related]
42. Nonstructural carbohydrate dynamics of lodgepole pine dying from mountain pine beetle attack. Wiley E; Rogers BJ; Hodgkinson R; Landhäusser SM New Phytol; 2016 Jan; 209(2):550-62. PubMed ID: 26256444 [TBL] [Abstract][Full Text] [Related]
43. Novel forest decline triggered by multiple interactions among climate, an introduced pathogen and bark beetles. Wong CM; Daniels LD Glob Chang Biol; 2017 May; 23(5):1926-1941. PubMed ID: 27901296 [TBL] [Abstract][Full Text] [Related]
44. It takes a few to tango: changing climate and fire regimes can cause regeneration failure of two subalpine conifers. Hansen WD; Braziunas KH; Rammer W; Seidl R; Turner MG Ecology; 2018 Apr; 99(4):966-977. PubMed ID: 29464688 [TBL] [Abstract][Full Text] [Related]
45. Too hot, too cold, or just right: Can wildfire restore dry forests of the interior Pacific Northwest? Greenler SM; Dunn CJ; Johnston JD; Reilly MJ; Merschel AG; Hagmann RK; Bailey JD PLoS One; 2023; 18(2):e0281927. PubMed ID: 36848330 [TBL] [Abstract][Full Text] [Related]
46. Previous fire occurrence, but not fire recurrence, modulates the effect of charcoal and ash on soil C and N dynamics in Pinus pinaster Aiton forests. Albert-Belda E; Hinojosa MB; Laudicina VA; García-Ruiz R; Pérez B; Moreno JM Sci Total Environ; 2022 Jan; 802():149924. PubMed ID: 34525694 [TBL] [Abstract][Full Text] [Related]
48. Caribou in the cross-fire? Considering terrestrial lichen forage in the face of mountain pine beetle (Dendroctonus ponderosae) expansion. Nobert BR; Larsen TA; Pigeon KE; Finnegan L PLoS One; 2020; 15(4):e0232248. PubMed ID: 32353088 [TBL] [Abstract][Full Text] [Related]
49. Ecosystem Resilience and Limitations Revealed by Soil Bacterial Community Dynamics in a Bark Beetle-Impacted Forest. Mikkelson KM; Brouillard BM; Bokman CM; Sharp JO mBio; 2017 Dec; 8(6):. PubMed ID: 29208740 [TBL] [Abstract][Full Text] [Related]
50. Factors influencing bark beetle outbreaks after forest fires on the Iberian Peninsula. Lombardero MJ; Ayres MP Environ Entomol; 2011 Oct; 40(5):1007-18. PubMed ID: 22251713 [TBL] [Abstract][Full Text] [Related]
51. Boreal forest soil carbon fluxes one year after a wildfire: Effects of burn severity and management. Kelly J; Ibáñez TS; Santín C; Doerr SH; Nilsson MC; Holst T; Lindroth A; Kljun N Glob Chang Biol; 2021 Sep; 27(17):4181-4195. PubMed ID: 34028945 [TBL] [Abstract][Full Text] [Related]
52. Widespread regeneration failure in forests of Greater Yellowstone under scenarios of future climate and fire. Rammer W; Braziunas KH; Hansen WD; Ratajczak Z; Westerling AL; Turner MG; Seidl R Glob Chang Biol; 2021 Sep; 27(18):4339-4351. PubMed ID: 34213047 [TBL] [Abstract][Full Text] [Related]
53. The global pyrogenic carbon cycle and its impact on the level of atmospheric CO Landry JS; Matthews HD Glob Chang Biol; 2017 Aug; 23(8):3205-3218. PubMed ID: 27992954 [TBL] [Abstract][Full Text] [Related]
54. Spatiotemporal patterns of mountain pine beetle activity in the southern Rocky Mountains. Chapman TB; Veblen TT; Schoennagel T Ecology; 2012 Oct; 93(10):2175-85. PubMed ID: 23185879 [TBL] [Abstract][Full Text] [Related]
55. Predictive accuracy of post-fire conifer death declines over time in models based on crown and bole injury. Shearman TM; Varner JM; Hood SM; van Mantgem PJ; Cansler CA; Wright M Ecol Appl; 2023 Mar; 33(2):e2760. PubMed ID: 36218008 [TBL] [Abstract][Full Text] [Related]
56. Effects of season and interval of prescribed burns on pyrogenic carbon in ponderosa pine stands in the southern Blue Mountains, Oregon, USA. Matosziuk LM; Alleau Y; Kerns BK; Bailey J; Johnson MG; Hatten JA Geoderma; 2019 Aug; 348():1-11. PubMed ID: 34795456 [TBL] [Abstract][Full Text] [Related]
57. Population densities and tree diameter effects associated with verbenone treatments to reduce mountain pine beetle-caused mortality of lodgepole pine. Progar RA; Blackford DC; Cluck DR; Costello S; Dunning LB; Eager T; Jorgensen CL; Munson AS; Steed B; Rinella MJ J Econ Entomol; 2013 Feb; 106(1):221-8. PubMed ID: 23448035 [TBL] [Abstract][Full Text] [Related]
58. Water-deficit and fungal infection can differentially affect the production of different classes of defense compounds in two host pines of mountain pine beetle. Erbilgin N; Cale JA; Lusebrink I; Najar A; Klutsch JG; Sherwood P; Enrico Bonello P; Evenden ML Tree Physiol; 2017 Mar; 37(3):338-350. PubMed ID: 27881799 [TBL] [Abstract][Full Text] [Related]
59. Evidence of compounded disturbance effects on vegetation recovery following high-severity wildfire and spruce beetle outbreak. Carlson AR; Sibold JS; Assal TJ; Negrón JF PLoS One; 2017; 12(8):e0181778. PubMed ID: 28777802 [TBL] [Abstract][Full Text] [Related]
60. Fire Severity Controlled Susceptibility to a 1940s Spruce Beetle Outbreak in Colorado, USA. Kulakowski D; Veblen TT; Bebi P PLoS One; 2016; 11(7):e0158138. PubMed ID: 27438289 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]