These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 33341633)
1. TiO Xiao X; Ma XL; Han X; Wu LJ; Liu C; Yu HQ Sci Total Environ; 2021 Mar; 760():144040. PubMed ID: 33341633 [TBL] [Abstract][Full Text] [Related]
2. Impacts on antibiotic-resistant bacteria and their horizontal gene transfer by graphene-based TiO Guo MT; Tian XB J Hazard Mater; 2019 Dec; 380():120877. PubMed ID: 31330386 [TBL] [Abstract][Full Text] [Related]
3. [Soil phage and their mediation on the horizontal transfer of antibiotic resistance genes: A review]. Chen ML; An XL; Yang K; Zhu YG Ying Yong Sheng Tai Xue Bao; 2021 Jun; 32(6):2267-2274. PubMed ID: 34212633 [TBL] [Abstract][Full Text] [Related]
4. Silver nanoparticles facilitate phage-borne resistance gene transfer in planktonic and microplastic-attached bacteria. Zhang Q; Zhou H; Jiang P; Wu L; Xiao X J Hazard Mater; 2024 May; 469():133942. PubMed ID: 38452675 [TBL] [Abstract][Full Text] [Related]
6. Phage Transduction is Involved in the Intergeneric Spread of Antibiotic Resistance-Associated bla Gabashvili E; Osepashvili M; Koulouris S; Ujmajuridze L; Tskhitishvili Z; Kotetishvili M Curr Microbiol; 2020 Feb; 77(2):185-193. PubMed ID: 31754824 [TBL] [Abstract][Full Text] [Related]
7. Effects of nano-TiO2 on antibiotic resistance transfer mediated by RP4 plasmid. Qiu Z; Shen Z; Qian D; Jin M; Yang D; Wang J; Zhang B; Yang Z; Chen Z; Wang X; Ding C; Wang D; Li JW Nanotoxicology; 2015; 9(7):895-904. PubMed ID: 25676619 [TBL] [Abstract][Full Text] [Related]
8. Effects and relevant mechanisms of non-antibiotic factors on the horizontal transfer of antibiotic resistance genes in water environments: A review. Jiang Q; Feng M; Ye C; Yu X Sci Total Environ; 2022 Feb; 806(Pt 3):150568. PubMed ID: 34627113 [TBL] [Abstract][Full Text] [Related]
9. Triclosan at environmental concentrations can enhance the spread of extracellular antibiotic resistance genes through transformation. Lu J; Wang Y; Zhang S; Bond P; Yuan Z; Guo J Sci Total Environ; 2020 Apr; 713():136621. PubMed ID: 32019018 [TBL] [Abstract][Full Text] [Related]
10. The effect of titanium dioxide (TiO2) nano-objects, and their aggregates and agglomerates greater than 100nm (NOAA) on microbes under UV irradiation. Yamada I; Nomura K; Iwahashi H; Horie M Chemosphere; 2016 Jan; 143():123-7. PubMed ID: 25956024 [TBL] [Abstract][Full Text] [Related]
11. Increase of antibiotic resistance genes via horizontal transfer in single- and two-chamber microbial electrolysis cells. Guo ZB; Sun WL; Zuo XJ; Song HL; Ling H; Zhang S Environ Sci Pollut Res Int; 2022 May; 29(24):36216-36224. PubMed ID: 35061176 [TBL] [Abstract][Full Text] [Related]
12. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes. Lu J; Wang Y; Jin M; Yuan Z; Bond P; Guo J Water Res; 2020 Feb; 169():115229. PubMed ID: 31783256 [TBL] [Abstract][Full Text] [Related]
13. Triclosan at environmentally relevant concentrations promotes horizontal transfer of multidrug resistance genes within and across bacterial genera. Lu J; Wang Y; Li J; Mao L; Nguyen SH; Duarte T; Coin L; Bond P; Yuan Z; Guo J Environ Int; 2018 Dec; 121(Pt 2):1217-1226. PubMed ID: 30389380 [TBL] [Abstract][Full Text] [Related]
14. Effects of voltage on the emergence and spread of antibiotic resistance genes in microbial electrolysis cells: From mutation to horizontal gene transfer. Zhang S; Sun WL; Song HL; Zhang T; Yin M; Wang Q; Zuo X Chemosphere; 2022 Mar; 291(Pt 1):132703. PubMed ID: 34718024 [TBL] [Abstract][Full Text] [Related]
15. Chloroxylenol at environmental concentrations can promote conjugative transfer of antibiotic resistance genes by multiple mechanisms. Guo Y; Gao J; Cui Y; Wang Z; Li Z; Duan W; Wang Y; Wu Z Sci Total Environ; 2022 Apr; 816():151599. PubMed ID: 34774958 [TBL] [Abstract][Full Text] [Related]
16. Phage particles harboring antibiotic resistance genes in fresh-cut vegetables and agricultural soil. Larrañaga O; Brown-Jaque M; Quirós P; Gómez-Gómez C; Blanch AR; Rodríguez-Rubio L; Muniesa M Environ Int; 2018 Jun; 115():133-141. PubMed ID: 29567433 [TBL] [Abstract][Full Text] [Related]
17. Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. Enault F; Briet A; Bouteille L; Roux S; Sullivan MB; Petit MA ISME J; 2017 Jan; 11(1):237-247. PubMed ID: 27326545 [TBL] [Abstract][Full Text] [Related]
18. Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment. Zhang Y; Gu AZ; Cen T; Li X; He M; Li D; Chen J Environ Pollut; 2018 Jun; 237():74-82. PubMed ID: 29477117 [TBL] [Abstract][Full Text] [Related]
19. Antibiotic resistance genes in phage particles isolated from human faeces and induced from clinical bacterial isolates. Brown-Jaque M; Calero-Cáceres W; Espinal P; Rodríguez-Navarro J; Miró E; González-López JJ; Cornejo T; Hurtado JC; Navarro F; Muniesa M Int J Antimicrob Agents; 2018 Mar; 51(3):434-442. PubMed ID: 29180282 [TBL] [Abstract][Full Text] [Related]
20. Effects of hematite on the dissemination of antibiotic resistance in pathogens and underlying mechanisms. Wu S; Ren P; Wu Y; Liu J; Huang Q; Cai P J Hazard Mater; 2022 Jun; 431():128537. PubMed ID: 35278942 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]