These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
397 related articles for article (PubMed ID: 33341735)
1. Chitosan 3D cell culture system promotes naïve-like features of human induced pluripotent stem cells: A novel tool to sustain pluripotency and facilitate differentiation. Chang PH; Chao HM; Chern E; Hsu SH Biomaterials; 2021 Jan; 268():120575. PubMed ID: 33341735 [TBL] [Abstract][Full Text] [Related]
2. Electrospun polystyrene scaffolds as a synthetic substrate for xeno-free expansion and differentiation of human induced pluripotent stem cells. Leong MF; Lu HF; Lim TC; Du C; Ma NKL; Wan ACA Acta Biomater; 2016 Dec; 46():266-277. PubMed ID: 27667015 [TBL] [Abstract][Full Text] [Related]
3. Development and evaluation of a novel xeno-free culture medium for human-induced pluripotent stem cells. Hua Y; Yoshimochi K; Li J; Takekita K; Shimotsuma M; Li L; Qu X; Zhang J; Sawa Y; Liu L; Miyagawa S Stem Cell Res Ther; 2022 Jun; 13(1):223. PubMed ID: 35658933 [TBL] [Abstract][Full Text] [Related]
4. Polymeric nanofibrous substrates stimulate pluripotent stem cells to form three-dimensional multilayered patty-like spheroids in feeder-free culture and maintain their pluripotency. Alamein MA; Wolvetang EJ; Ovchinnikov DA; Stephens S; Sanders K; Warnke PH J Tissue Eng Regen Med; 2015 Sep; 9(9):1078-83. PubMed ID: 25423911 [TBL] [Abstract][Full Text] [Related]
5. Scalable stirred suspension culture for the generation of billions of human induced pluripotent stem cells using single-use bioreactors. Kwok CK; Ueda Y; Kadari A; Günther K; Ergün S; Heron A; Schnitzler AC; Rook M; Edenhofer F J Tissue Eng Regen Med; 2018 Feb; 12(2):e1076-e1087. PubMed ID: 28382727 [TBL] [Abstract][Full Text] [Related]
6. Polyacrylamide Hydrogels with Rigidity-Independent Surface Chemistry Show Limited Long-Term Maintenance of Pluripotency of Human Induced Pluripotent Stem Cells on Soft Substrates. Paiva S; Joanne P; Migdal C; Soler EL; Hovhannisyan Y; Nicolas A; Agbulut O ACS Biomater Sci Eng; 2020 Jan; 6(1):340-351. PubMed ID: 33463241 [TBL] [Abstract][Full Text] [Related]
7. A Protocol for Culture and Characterization of Human Induced Pluripotent Stem Cells After Induction. Cheng YS; Xu M; Chen G; Beers J; Chen CZ; Liu C; Zou J; Zheng W Curr Protoc; 2023 Aug; 3(8):e866. PubMed ID: 37610273 [TBL] [Abstract][Full Text] [Related]
8. Positioning canine induced pluripotent stem cells (iPSCs) in the reprogramming landscape of naïve or primed state in comparison to mouse and human iPSCs. Menon DV; Bhaskar S; Sheshadri P; Joshi CG; Patel D; Kumar A Life Sci; 2021 Jan; 264():118701. PubMed ID: 33130086 [TBL] [Abstract][Full Text] [Related]
9. Human iPS cell-derived fibroblast-like cells as feeder layers for iPS cell derivation and expansion. Du SH; Tay JC; Chen C; Tay FC; Tan WK; Li ZD; Wang S J Biosci Bioeng; 2015 Aug; 120(2):210-7. PubMed ID: 25622768 [TBL] [Abstract][Full Text] [Related]
10. Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering. Haraguchi Y; Matsuura K; Shimizu T; Yamato M; Okano T J Tissue Eng Regen Med; 2015 Dec; 9(12):1363-75. PubMed ID: 23728860 [TBL] [Abstract][Full Text] [Related]
11. Tankyrase inhibition promotes a stable human naïve pluripotent state with improved functionality. Zimmerlin L; Park TS; Huo JS; Verma K; Pather SR; Talbot CC; Agarwal J; Steppan D; Zhang YW; Considine M; Guo H; Zhong X; Gutierrez C; Cope L; Canto-Soler MV; Friedman AD; Baylin SB; Zambidis ET Development; 2016 Dec; 143(23):4368-4380. PubMed ID: 27660325 [TBL] [Abstract][Full Text] [Related]
12. Enhanced Cell Penetration and Pluripotency Maintenance of hiPSCs in 3D Natural Chitosan Scaffolds. Tang Y; Zhou Y; Lin G; Zhang M Macromol Biosci; 2023 Jun; 23(6):e2200460. PubMed ID: 36896926 [TBL] [Abstract][Full Text] [Related]
13. Unlocking the Potential of Human-Induced Pluripotent Stem Cells: Cellular Responses and Secretome Profiles in Peptide Hydrogel 3D Culture. Cui M; Wu W; Li Q; Qi G; Liu X; Bai J; Chen M; Li P; Sun XS Cells; 2024 Jan; 13(2):. PubMed ID: 38247835 [TBL] [Abstract][Full Text] [Related]
14. Cost-effective culture of human induced pluripotent stem cells using UV/ozone-modified culture plastics with reduction of cell-adhesive matrix coating. Kasai K; Tohyama S; Suzuki H; Tanosaki S; Fukuda K; Fujita J; Miyata S Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110788. PubMed ID: 32279811 [TBL] [Abstract][Full Text] [Related]
15. Transcriptomic analysis of feeder-free culture system for maintaining naïve-state pluripotency in human pluripotent stem cells. Isono W; Kawasaki T; Ichida JK; Nagasaka K; Hiraike O; Umezawa A; Akutsu H Stem Cell Investig; 2023; 10():10. PubMed ID: 37155477 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional hydrogel culture conditions promote the differentiation of human induced pluripotent stem cells into hepatocytes. Luo Y; Lou C; Zhang S; Zhu Z; Xing Q; Wang P; Liu T; Liu H; Li C; Shi W; Du Z; Gao Y Cytotherapy; 2018 Jan; 20(1):95-107. PubMed ID: 28969895 [TBL] [Abstract][Full Text] [Related]
17. Chemical Reversion of Conventional Human Pluripotent Stem Cells to a Naïve-like State with Improved Multilineage Differentiation Potency. Park TS; Zimmerlin L; Evans-Moses R; Zambidis ET J Vis Exp; 2018 Jun; (136):. PubMed ID: 29939183 [TBL] [Abstract][Full Text] [Related]
18. High Nutritional Quality of Human-Induced Pluripotent Stem Cell-Generated Proteins through an Advanced Scalable Peptide Hydrogel 3D Suspension System. Xu S; Qi G; Durrett TP; Li Y; Liu X; Bai J; Chen MS; Sun XS; Wang W Foods; 2023 Jul; 12(14):. PubMed ID: 37509805 [TBL] [Abstract][Full Text] [Related]
19. Platform for induction and maintenance of transgene-free hiPSCs resembling ground state pluripotent stem cells. Valamehr B; Robinson M; Abujarour R; Rezner B; Vranceanu F; Le T; Medcalf A; Lee TT; Fitch M; Robbins D; Flynn P Stem Cell Reports; 2014 Mar; 2(3):366-81. PubMed ID: 24672758 [TBL] [Abstract][Full Text] [Related]
20. Human induced pluripotent stem cells differentiated into chondrogenic lineage via generation of mesenchymal progenitor cells. Koyama N; Miura M; Nakao K; Kondo E; Fujii T; Taura D; Kanamoto N; Sone M; Yasoda A; Arai H; Bessho K; Nakao K Stem Cells Dev; 2013 Jan; 22(1):102-13. PubMed ID: 22817676 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]