BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 33342048)

  • 1. Exploring biogeochemical and ecological redundancy in phytoplankton communities in the global ocean.
    Dutkiewicz S; Boyd PW; Riebesell U
    Glob Chang Biol; 2021 Mar; 27(6):1196-1213. PubMed ID: 33342048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomass changes and trophic amplification of plankton in a warmer ocean.
    Chust G; Allen JI; Bopp L; Schrum C; Holt J; Tsiaras K; Zavatarelli M; Chifflet M; Cannaby H; Dadou I; Daewel U; Wakelin SL; Machu E; Pushpadas D; Butenschon M; Artioli Y; Petihakis G; Smith C; Garçon V; Goubanova K; Le Vu B; Fach BA; Salihoglu B; Clementi E; Irigoien X
    Glob Chang Biol; 2014 Jul; 20(7):2124-39. PubMed ID: 24604761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoplankton thermal trait parameterization alters community structure and biogeochemical processes in a modeled ocean.
    Anderson SI; Fronda C; Barton AD; Clayton S; Rynearson TA; Dutkiewicz S
    Glob Chang Biol; 2024 Jan; 30(1):e17093. PubMed ID: 38273480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mismatch between marine plankton range movements and the velocity of climate change.
    Chivers WJ; Walne AW; Hays GC
    Nat Commun; 2017 Feb; 8():14434. PubMed ID: 28186097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consistent trophic amplification of marine biomass declines under climate change.
    Kwiatkowski L; Aumont O; Bopp L
    Glob Chang Biol; 2019 Jan; 25(1):218-229. PubMed ID: 30295401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Future phytoplankton diversity in a changing climate.
    Henson SA; Cael BB; Allen SR; Dutkiewicz S
    Nat Commun; 2021 Sep; 12(1):5372. PubMed ID: 34508102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction matters: Bottom-up driver interdependencies alter the projected response of phytoplankton communities to climate change.
    Seifert M; Nissen C; Rost B; Vogt M; Völker C; Hauck J
    Glob Chang Biol; 2023 Aug; 29(15):4234-4258. PubMed ID: 37265254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trends in tuna carbon isotopes suggest global changes in pelagic phytoplankton communities.
    Lorrain A; Pethybridge H; Cassar N; Receveur A; Allain V; Bodin N; Bopp L; Choy CA; Duffy L; Fry B; Goñi N; Graham BS; Hobday AJ; Logan JM; Ménard F; Menkes CE; Olson RJ; Pagendam DE; Point D; Revill AT; Somes CJ; Young JW
    Glob Chang Biol; 2020 Feb; 26(2):458-470. PubMed ID: 31578765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial ecology of the Southern Ocean.
    Castillo DJ; Dithugoe CD; Bezuidt OK; Makhalanyane TP
    FEMS Microbiol Ecol; 2022 Oct; 98(11):. PubMed ID: 36255374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term oceanographic and ecological research in the Western English Channel.
    Southward AJ; Langmead O; Hardman-Mountford NJ; Aiken J; Boalch GT; Dando PR; Genner MJ; Joint I; Kendall MA; Halliday NC; Harris RP; Leaper R; Mieszkowska N; Pingree RD; Richardson AJ; Sims DW; Smith T; Walne AW; Hawkins SJ
    Adv Mar Biol; 2005; 47():1-105. PubMed ID: 15596166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elemental stoichiometry of the key calcifying marine phytoplankton Emiliania huxleyi under ocean climate change: A meta-analysis.
    Sheward RM; Liefer JD; Irwin AJ; Finkel ZV
    Glob Chang Biol; 2023 Aug; 29(15):4259-4278. PubMed ID: 37279257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trophic strategies explain the ocean niches of small eukaryotic phytoplankton.
    Edwards KF; Li Q; McBeain KA; Schvarcz CR; Steward GF
    Proc Biol Sci; 2023 Jan; 290(1991):20222021. PubMed ID: 36695036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decadal changes in global phytoplankton compositions influenced by biogeochemical variables.
    Mishra RK; Jena B; Venkataramana V; Sreerag A; Soares MA; AnilKumar N
    Environ Res; 2022 Apr; 206():112546. PubMed ID: 34902377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental control of marine phytoplankton stoichiometry in the North Atlantic Ocean.
    Sauterey B; Ward BA
    Proc Natl Acad Sci U S A; 2022 Jan; 119(1):. PubMed ID: 34949718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid diversification underlying the global dominance of a cosmopolitan phytoplankton.
    Bendif EM; Probert I; Archontikis OA; Young JR; Beaufort L; Rickaby RE; Filatov D
    ISME J; 2023 Apr; 17(4):630-640. PubMed ID: 36747097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean.
    Van de Waal DB; Litchman E
    Philos Trans R Soc Lond B Biol Sci; 2020 May; 375(1798):20190706. PubMed ID: 32200734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity and biogeochemical function of planktonic fungi in the ocean.
    Wang G; Wang X; Liu X; Li Q
    Prog Mol Subcell Biol; 2012; 53():71-88. PubMed ID: 22222827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Consumer Biomass, Size-Structure, Production, Catch Potential, Responses to Fishing and Associated Uncertainties in the World's Marine Ecosystems.
    Jennings S; Collingridge K
    PLoS One; 2015; 10(7):e0133794. PubMed ID: 26226590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental structuring of marine plankton phenology.
    Boyce DG; Petrie B; Frank KT; Worm B; Leggett WC
    Nat Ecol Evol; 2017 Oct; 1(10):1484-1494. PubMed ID: 29185511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Links between fish abundance and ocean biogeochemistry as recorded in marine sediments.
    Kavanagh L; Galbraith E
    PLoS One; 2018; 13(8):e0199420. PubMed ID: 30067749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.