BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 33343008)

  • 1. Genetic Yield Gains In CIMMYT's International Elite Spring Wheat Yield Trials By Modeling The Genotype × Environment Interaction.
    Crespo-Herrera LA; Crossa J; Huerta-Espino J; Autrique E; Mondal S; Velu G; Vargas M; Braun HJ; Singh RP
    Crop Sci; 2017; 57():789-801. PubMed ID: 33343008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grain yield genetic gains and changes in physiological related traits for CIMMYT's High Rainfall Wheat Screening Nursery tested across international environments.
    Gerard GS; Crespo-Herrera LA; Crossa J; Mondal S; Velu G; Juliana P; Huerta-Espino J; Vargas M; Rhandawa MS; Bhavani S; Braun H; Singh RP
    Field Crops Res; 2020 Apr; 249():107742. PubMed ID: 32255898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced radiation use efficiency and grain filling rate as the main drivers of grain yield genetic gains in the CIMMYT elite spring wheat yield trial.
    Gerard G; Mondal S; Piñera-Chávez F; Rivera-Amado C; Molero G; Crossa J; Huerta-Espino J; Velu G; Braun H; Singh R; Crespo-Herrera L
    Sci Rep; 2024 May; 14(1):10975. PubMed ID: 38744876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic Gains for Grain Yield in CIMMYT's Semi-Arid Wheat Yield Trials Grown in Suboptimal Environments.
    Crespo-Herrera LA; Crossa J; Huerta-Espino J; Vargas M; Mondal S; Velu G; Payne TS; Braun H; Singh RP
    Crop Sci; 2018; 58(5):1890-1898. PubMed ID: 33343013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grain yield, adaptation and progress in breeding for early-maturing and heat-tolerant wheat lines in South Asia.
    Mondal S; Singh RP; Mason ER; Huerta-Espino J; Autrique E; Joshi AK
    Field Crops Res; 2016 Jun; 192():78-85. PubMed ID: 27307654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retrospective Quantitative Genetic Analysis and Genomic Prediction of Global Wheat Yields.
    Juliana P; Singh RP; Braun HJ; Huerta-Espino J; Crespo-Herrera L; Payne T; Poland J; Shrestha S; Kumar U; Joshi AK; Imtiaz M; Rahman MM; Toledo FH
    Front Plant Sci; 2020; 11():580136. PubMed ID: 32973861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Target Population of Environments for Wheat Breeding in India: Definition, Prediction and Genetic Gains.
    Crespo-Herrera LA; Crossa J; Huerta-Espino J; Mondal S; Velu G; Juliana P; Vargas M; Pérez-Rodríguez P; Joshi AK; Braun HJ; Singh RP
    Front Plant Sci; 2021; 12():638520. PubMed ID: 34108977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection signatures in the CIMMYT International Elite Spring and Semi-arid Wheat Yield Trials.
    Mondaini A; Rosyara U; Sehgal D; Dreisigacker S
    Plant Genome; 2022 Mar; 15(1):e20165. PubMed ID: 34750999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global adaptation patterns of Australian and CIMMYT spring bread wheat.
    Mathews KL; Chapman SC; Trethowan R; Pfeiffer W; van Ginkel M; Crossa J; Payne T; Delacy I; Fox PN; Cooper M
    Theor Appl Genet; 2007 Oct; 115(6):819-35. PubMed ID: 17768603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An assessment of wheat yield sensitivity and breeding gains in hot environments.
    Gourdji SM; Mathews KL; Reynolds M; Crossa J; Lobell DB
    Proc Biol Sci; 2013 Feb; 280(1752):20122190. PubMed ID: 23222442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic gains in early maturing maize hybrids developed by the International Maize and Wheat Improvement Center in Southern Africa during 2000-2018.
    Tarekegne A; Wegary D; Cairns JE; Zaman-Allah M; Beyene Y; Negera D; Teklewold A; Tesfaye K; Jumbo MB; Das B; Nhamucho EJ; Simpasa K; Kaonga KKE; Mashingaidze K; Thokozile N; Mhike X; Prasanna BM
    Front Plant Sci; 2023; 14():1321308. PubMed ID: 38293626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic trends in CIMMYT's tropical maize breeding pipelines.
    Prasanna BM; Burgueño J; Beyene Y; Makumbi D; Asea G; Woyengo V; Tarekegne A; Magorokosho C; Wegary D; Ndhlela T; Zaman-Allah M; Matova PM; Mwansa K; Mashingaidze K; Fato P; Teklewold A; Vivek BS; Zaidi PH; Vinayan MT; Patne N; Rakshit S; Kumar R; Jat SL; Singh SB; Kuchanur PH; Lohithaswa HC; Singh NK; Koirala KB; Ahmed S; Vicente FS; Dhliwayo T; Cairns JE
    Sci Rep; 2022 Nov; 12(1):20110. PubMed ID: 36418412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased prediction accuracy in wheat breeding trials using a marker × environment interaction genomic selection model.
    Lopez-Cruz M; Crossa J; Bonnett D; Dreisigacker S; Poland J; Jannink JL; Singh RP; Autrique E; de los Campos G
    G3 (Bethesda); 2015 Feb; 5(4):569-82. PubMed ID: 25660166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic Selection for Grain Yield in the CIMMYT Wheat Breeding Program-Status and Perspectives.
    Juliana P; Singh RP; Braun HJ; Huerta-Espino J; Crespo-Herrera L; Govindan V; Mondal S; Poland J; Shrestha S
    Front Plant Sci; 2020; 11():564183. PubMed ID: 33042185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments.
    Sukumaran S; Dreisigacker S; Lopes M; Chavez P; Reynolds MP
    Theor Appl Genet; 2015 Feb; 128(2):353-63. PubMed ID: 25490985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cultivar × Management Interaction to Reduce Lodging and Improve Grain Yield of Irrigated Spring Wheat: Optimising Plant Growth Regulator Use, N Application Timing, Row Spacing and Sowing Date.
    Peake AS; Bell KL; Fischer RA; Gardner M; Das BT; Poole N; Mumford M
    Front Plant Sci; 2020; 11():401. PubMed ID: 32411154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wheat genetic gains for two distinct management schemes in China: An analysis of elite spring type genotypes.
    Mingliang D; Asim M; Mingju L; Abdelkhalik S; Manore D; Shaoxiang L; Hong Z; Liping L
    PLoS One; 2020; 15(2):e0228823. PubMed ID: 32027705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring x SQ1 and its use to compare QTLs for grain yield across a range of environments.
    Quarrie SA; Steed A; Calestani C; Semikhodskii A; Lebreton C; Chinoy C; Steele N; Pljevljakusić D; Waterman E; Weyen J; Schondelmaier J; Habash DZ; Farmer P; Saker L; Clarkson DT; Abugalieva A; Yessimbekova M; Turuspekov Y; Abugalieva S; Tuberosa R; Sanguineti MC; Hollington PA; Aragués R; Royo A; Dodig D
    Theor Appl Genet; 2005 Mar; 110(5):865-80. PubMed ID: 15719212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harnessing genetic potential of wheat germplasm banks through impact-oriented-prebreeding for future food and nutritional security.
    Singh S; Vikram P; Sehgal D; Burgueño J; Sharma A; Singh SK; Sansaloni CP; Joynson R; Brabbs T; Ortiz C; Solis-Moya E; Govindan V; Gupta N; Sidhu HS; Basandrai AK; Basandrai D; Ledesma-Ramires L; Suaste-Franco MP; Fuentes-Dávila G; Moreno JI; Sonder K; Singh VK; Singh S; Shokat S; Arif MAR; Laghari KA; Srivastava P; Bhavani S; Kumar S; Pal D; Jaiswal JP; Kumar U; Chaudhary HK; Crossa J; Payne TS; Imtiaz M; Sohu VS; Singh GP; Bains NS; Hall A; Pixley KV
    Sci Rep; 2018 Aug; 8(1):12527. PubMed ID: 30131572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic Trends Estimation in IRRIs Rice Drought Breeding Program and Identification of High Yielding Drought-Tolerant Lines.
    Khanna A; Anumalla M; Catolos M; Bartholomé J; Fritsche-Neto R; Platten JD; Pisano DJ; Gulles A; Sta Cruz MT; Ramos J; Faustino G; Bhosale S; Hussain W
    Rice (N Y); 2022 Mar; 15(1):14. PubMed ID: 35247120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.