These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33343008)

  • 61. Rapid Cycling Genomic Selection in a Multiparental Tropical Maize Population.
    Zhang X; Pérez-Rodríguez P; Burgueño J; Olsen M; Buckler E; Atlin G; Prasanna BM; Vargas M; San Vicente F; Crossa J
    G3 (Bethesda); 2017 Jul; 7(7):2315-2326. PubMed ID: 28533335
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Genotype and environmental variation in phenolic content, phenolic acid composition, and antioxidant activity of hard spring wheat.
    Mpofu A; Sapirstein HD; Beta T
    J Agric Food Chem; 2006 Feb; 54(4):1265-70. PubMed ID: 16478246
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Exotic QTL improve grain quality in the tri-parental wheat population SW84.
    Nedelkou IP; Maurer A; Schubert A; Léon J; Pillen K
    PLoS One; 2017; 12(7):e0179851. PubMed ID: 28686676
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Genetic Gain from Phenotypic and Genomic Selection for Quantitative Resistance to Stem Rust of Wheat.
    Rutkoski J; Singh RP; Huerta-Espino J; Bhavani S; Poland J; Jannink JL; Sorrells ME
    Plant Genome; 2015 Jul; 8(2):eplantgenome2014.10.0074. PubMed ID: 33228306
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Genetic variation in heat tolerance-related traits in a population of wheat multiple synthetic derivatives.
    Elbashir AAE; Gorafi YSA; Tahir ISA; Elhashimi AMA; Abdalla MGA; Tsujimoto H
    Breed Sci; 2017 Dec; 67(5):483-492. PubMed ID: 29398942
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Genome-Wide Association Mapping of Loci for Resistance to Stripe Rust in North American Elite Spring Wheat Germplasm.
    Godoy JG; Rynearson S; Chen X; Pumphrey M
    Phytopathology; 2018 Feb; 108(2):234-245. PubMed ID: 28952421
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Comparison of photosynthetic components of wheat genotypes under rain-fed and irrigated conditions.
    Khamssi NN; Najaphy A
    Photochem Photobiol; 2012; 88(1):76-80. PubMed ID: 21967636
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Wheat Phenological Development and Growth Studies As Affected by Drought and Late Season High Temperature Stress under Arid Environment.
    Ihsan MZ; El-Nakhlawy FS; Ismail SM; Fahad S; Daur I
    Front Plant Sci; 2016; 7():795. PubMed ID: 27375650
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat.
    Rebetzke GJ; Bonnett DG; Reynolds MP
    J Exp Bot; 2016 Apr; 67(9):2573-86. PubMed ID: 26976817
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Multi-location wheat stripe rust QTL analysis: genetic background and epistatic interactions.
    Vazquez MD; Zemetra R; Peterson CJ; Chen XM; Heesacker A; Mundt CC
    Theor Appl Genet; 2015 Jul; 128(7):1307-18. PubMed ID: 25847212
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Genome-wide association mapping in bread wheat subjected to independent and combined high temperature and drought stress.
    Qaseem MF; Qureshi R; Muqaddasi QH; Shaheen H; Kousar R; Röder MS
    PLoS One; 2018; 13(6):e0199121. PubMed ID: 29949622
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Assessing Genetic Diversity to Breed Competitive Biofortified Wheat With Enhanced Grain Zn and Fe Concentrations.
    Velu G; Crespo Herrera L; Guzman C; Huerta J; Payne T; Singh RP
    Front Plant Sci; 2018; 9():1971. PubMed ID: 30687366
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Evaluating stripe rust resistance in Indian wheat genotypes and breeding lines using molecular markers.
    Rani R; Singh R; Yadav NR
    C R Biol; 2019; 342(5-6):154-174. PubMed ID: 31239197
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Phenotyping and evaluation of CIMMYT WPHYSGP nursery lines and local wheat varieties under two irrigation regimes.
    Zhang Y; Wang Z; Fan Z; Li J; Gao X; Zhang H; Zhao Q; Wang Z; Liu Z
    Breed Sci; 2019 Mar; 69(1):55-67. PubMed ID: 31086484
    [TBL] [Abstract][Full Text] [Related]  

  • 75. International Winter Wheat nurseries data: Facultative and Winter Wheat Observation Nurseries and International Winter Wheat yield trials for semi-arid and irrigated conditions.
    Keser M; Akin B; Ozdemir F; Bartolini P; Jeitani A
    Data Brief; 2022 Apr; 41():107902. PubMed ID: 35198681
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Correlation of phenolic acid content of maize to resistance toSitophilus zeamais, the maize weevil, in CIMMYT'S collections.
    Classen D; Arnason JT; Serratos JA; Lambert JD; Nozzolillo C; Philogéne BJ
    J Chem Ecol; 1990 Feb; 16(2):301-15. PubMed ID: 24263491
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Marginal Gains and Clinical Trials - Improving and Influencing Practice.
    Gilbert DC; Henry AM; Choudhury A
    Clin Oncol (R Coll Radiol); 2022 Jul; 34(7):419-420. PubMed ID: 35491365
    [No Abstract]   [Full Text] [Related]  

  • 78. [Dr. Attila Fonyó].
    Merkely B
    Orv Hetil; 2022 Dec; 163(51):2018-2019. PubMed ID: 36528824
    [No Abstract]   [Full Text] [Related]  

  • 79. Past Gains and New Challenges.
    J Natl Med Assoc; 1964 Jul; 56(4):347-8. PubMed ID: 20894187
    [No Abstract]   [Full Text] [Related]  

  • 80. Enhanced radiation use efficiency and grain filling rate as the main drivers of grain yield genetic gains in the CIMMYT elite spring wheat yield trial.
    Gerard G; Mondal S; Piñera-Chávez F; Rivera-Amado C; Molero G; Crossa J; Huerta-Espino J; Velu G; Braun H; Singh R; Crespo-Herrera L
    Sci Rep; 2024 May; 14(1):10975. PubMed ID: 38744876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.