These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 33343060)
1. Characterization of Solid Fuel Chars recovered from Microwave Hydrothermal Carbonization of Human Biowaste. Afolabi OOD; Sohail M; Thomas CLP Energy (Oxf); 2017; 134():74-89. PubMed ID: 33343060 [TBL] [Abstract][Full Text] [Related]
2. Comparative evaluation of conventional and microwave hydrothermal carbonization of human biowaste for value recovery. Afolabi OOD; Sohail M Water Sci Technol; 2017 Jun; 75(12):2852-2863. PubMed ID: 28659525 [TBL] [Abstract][Full Text] [Related]
3. Comparative Investigation of the Physicochemical Properties of Chars Produced by Hydrothermal Carbonization, Pyrolysis, and Microwave-Induced Pyrolysis of Food Waste. Khan MA; Hameed BH; Siddiqui MR; Alothman ZA; Alsohaimi IH Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215734 [TBL] [Abstract][Full Text] [Related]
4. Conversion of heavy metal-containing biowaste from phytoremediation site to value-added solid fuel through hydrothermal carbonization. Lee J; Park KY Environ Pollut; 2021 Jan; 269():116127. PubMed ID: 33279266 [TBL] [Abstract][Full Text] [Related]
5. Hydrothermal carbonization and torrefaction of grape pomace: a comparative evaluation. Pala M; Kantarli IC; Buyukisik HB; Yanik J Bioresour Technol; 2014 Jun; 161():255-62. PubMed ID: 24709539 [TBL] [Abstract][Full Text] [Related]
6. Conductive Carbon Materials from the Hydrothermal Carbonization of Vineyard Residues for the Application in Electrochemical Double-Layer Capacitors (EDLCs) and Direct Carbon Fuel Cells (DCFCs). Hoffmann V; Jung D; Zimmermann J; Rodriguez Correa C; Elleuch A; Halouani K; Kruse A Materials (Basel); 2019 May; 12(10):. PubMed ID: 31130674 [TBL] [Abstract][Full Text] [Related]
7. Hydrothermal carbonization of waste from leather processing and feasibility of produced hydrochar as an alternative solid fuel. Lee J; Hong J; Jang D; Park KY J Environ Manage; 2019 Oct; 247():115-120. PubMed ID: 31234046 [TBL] [Abstract][Full Text] [Related]
8. Microwave Hydrothermal Carbonization of Rice Straw: Optimization of Process Parameters and Upgrading of Chemical, Fuel, Structural and Thermal Properties. Nizamuddin S; Qureshi SS; Baloch HA; Siddiqui MTH; Takkalkar P; Mubarak NM; Dumbre DK; Griffin GJ; Madapusi S; Tanksale A Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30696042 [TBL] [Abstract][Full Text] [Related]
9. Carbon Sequestration Potential of Manure-Derived Hydrochar Aided by Secondary Stabilization. Bever CG; Coronella CJ ACS Sustain Chem Eng; 2024 Apr; 12(14):5705-5715. PubMed ID: 38606338 [TBL] [Abstract][Full Text] [Related]
10. Effect of solvent and feedstock selection on primary and secondary chars produced via hydrothermal carbonization of food wastes. Pecchi M; Baratieri M; Goldfarb JL; Maag AR Bioresour Technol; 2022 Mar; 348():126799. PubMed ID: 35122980 [TBL] [Abstract][Full Text] [Related]
11. Improvement of corn stover fuel properties via hydrothermal carbonization combined with surfactant. Tu R; Sun Y; Wu Y; Fan X; Wang J; Cheng S; Jia Z; Jiang E; Xu X Biotechnol Biofuels; 2019; 12():249. PubMed ID: 31636708 [TBL] [Abstract][Full Text] [Related]
12. Optimization and characterization of hydrochar produced from microwave hydrothermal carbonization of fish waste. Kannan S; Gariepy Y; Raghavan GSV Waste Manag; 2017 Jul; 65():159-168. PubMed ID: 28412097 [TBL] [Abstract][Full Text] [Related]
13. Enhanced fuel characteristics and physical chemistry of microwave hydrochar for sustainable fuel pellet production via co-densification. Kang K; Nanda S; Lam SS; Zhang T; Huo L; Zhao L Environ Res; 2020 Jul; 186():109480. PubMed ID: 32302869 [TBL] [Abstract][Full Text] [Related]
14. Downstream augmentation of hydrothermal carbonization with anaerobic digestion for integrated biogas and hydrochar production from the organic fraction of municipal solid waste: A circular economy concept. Sharma HB; Panigrahi S; Sarmah AK; Dubey BK Sci Total Environ; 2020 Mar; 706():135907. PubMed ID: 31846879 [TBL] [Abstract][Full Text] [Related]
15. Hydrothermal carbonization of Opuntia ficus-indica cladodes: Role of process parameters on hydrochar properties. Volpe M; Goldfarb JL; Fiori L Bioresour Technol; 2018 Jan; 247():310-318. PubMed ID: 28950140 [TBL] [Abstract][Full Text] [Related]
16. Pyrolysis of hydrochar from digestate: Effect of hydrothermal carbonization and pyrolysis temperatures on pyrochar formation. Garlapalli RK; Wirth B; Reza MT Bioresour Technol; 2016 Nov; 220():168-174. PubMed ID: 27567477 [TBL] [Abstract][Full Text] [Related]
17. Torrefaction and carbonization of refuse derived fuel: Char characterization and evaluation of gaseous and liquid emissions. Nobre C; Alves O; Longo A; Vilarinho C; Gonçalves M Bioresour Technol; 2019 Aug; 285():121325. PubMed ID: 30991186 [TBL] [Abstract][Full Text] [Related]
18. Characterized hydrochar of algal biomass for producing solid fuel through hydrothermal carbonization. Park KY; Lee K; Kim D Bioresour Technol; 2018 Jun; 258():119-124. PubMed ID: 29524686 [TBL] [Abstract][Full Text] [Related]
19. On-line analysis of the correlation between gasification characteristics and microstructure of woody biowaste after hydrothermal carbonization. Zeng M; Ge Z; Ma Y; Zha Z; Zhang H Bioresour Technol; 2021 Dec; 342():126009. PubMed ID: 34563822 [TBL] [Abstract][Full Text] [Related]
20. Improvement of the fuel properties of dairy manure by increasing the biomass-to-water ratio in hydrothermal carbonization. Aliyu M; Iwabuchi K; Itoh T PLoS One; 2022; 17(7):e0269935. PubMed ID: 35849561 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]