These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 33343060)
21. Management of off-specification compost by using co-hydrothermal carbonization with olive tree pruning. Assessing energy potential of hydrochar. González-Arias J; Carnicero A; Sánchez ME; Martínez EJ; López R; Cara-Jiménez J Waste Manag; 2021 Apr; 124():224-234. PubMed ID: 33631447 [TBL] [Abstract][Full Text] [Related]
22. The influence of manure feedstock, slow pyrolysis, and hydrothermal temperature on manure thermochemical and combustion properties. Zhou S; Liang H; Han L; Huang G; Yang Z Waste Manag; 2019 Apr; 88():85-95. PubMed ID: 31079653 [TBL] [Abstract][Full Text] [Related]
23. Char derived from sewage sludge of hydrothermal carbonization and supercritical water gasification: Comparison of the properties of two chars. Wang C; Zhu W; Fan X Waste Manag; 2021 Mar; 123():88-96. PubMed ID: 33571833 [TBL] [Abstract][Full Text] [Related]
24. Effects of hydrolysis and carbonization reactions on hydrochar production. Fakkaew K; Koottatep T; Polprasert C Bioresour Technol; 2015 Sep; 192():328-34. PubMed ID: 26051497 [TBL] [Abstract][Full Text] [Related]
25. Co-hydrothermal carbonization of polyvinyl chloride and corncob for clean solid fuel production. Lu X; Ma X; Chen X; Yao Z; Zhang C Bioresour Technol; 2020 Apr; 301():122763. PubMed ID: 31972403 [TBL] [Abstract][Full Text] [Related]
26. Co-hydrothermal carbonization of lignocellulosic biomass and swine manure: Hydrochar properties and heavy metal transformation behavior. Lang Q; Guo Y; Zheng Q; Liu Z; Gai C Bioresour Technol; 2018 Oct; 266():242-248. PubMed ID: 29982044 [TBL] [Abstract][Full Text] [Related]
27. Hydrothermal carbonization of yard waste for solid bio-fuel production: Study on combustion kinetic, energy properties, grindability and flowability of hydrochar. Sharma HB; Panigrahi S; Dubey BK Waste Manag; 2019 May; 91():108-119. PubMed ID: 31203932 [TBL] [Abstract][Full Text] [Related]
28. Hydrothermal carbonization as an alternative sanitation technology: process optimization and development of low-cost reactor. Chung JW; Gerner G; Ovsyannikova E; Treichler A; Baier U; Libra J; Krebs R Open Res Eur; 2021; 1():139. PubMed ID: 37645161 [No Abstract] [Full Text] [Related]
29. Hydrothermal carbonization of off-specification compost: a byproduct of the organic municipal solid waste treatment. Basso D; Weiss-Hortala E; Patuzzi F; Castello D; Baratieri M; Fiori L Bioresour Technol; 2015 Apr; 182():217-224. PubMed ID: 25700341 [TBL] [Abstract][Full Text] [Related]
30. Hydrochar production from high-ash low-lipid microalgal biomass via hydrothermal carbonization: Effects of operational parameters and products characterization. Khoo CG; Lam MK; Mohamed AR; Lee KT Environ Res; 2020 Sep; 188():109828. PubMed ID: 32798947 [TBL] [Abstract][Full Text] [Related]
31. Thermal conversion of municipal solid waste via hydrothermal carbonization: comparison of carbonization products to products from current waste management techniques. Lu X; Jordan B; Berge ND Waste Manag; 2012 Jul; 32(7):1353-65. PubMed ID: 22516099 [TBL] [Abstract][Full Text] [Related]
32. Preparation and properties of hydrochars from macadamia nut shell via hydrothermal carbonization. Fan F; Yang Z; Li H; Shi Z; Kan H R Soc Open Sci; 2018 Oct; 5(10):181126. PubMed ID: 30473856 [TBL] [Abstract][Full Text] [Related]
33. Influence of solid content and maximum temperature on the performance of a hydrothermal carbonization reactor. Zabaleta I; Marchetti P; Lohri CR; Zurbrügg C Environ Technol; 2017 Nov; 38(22):2856-2865. PubMed ID: 28067116 [TBL] [Abstract][Full Text] [Related]
34. Chemical and morphological changes in hydrochars derived from microcrystalline cellulose and investigated by chromatographic, spectroscopic and adsorption techniques. Diakité M; Paul A; Jäger C; Pielert J; Mumme J Bioresour Technol; 2013 Dec; 150():98-105. PubMed ID: 24157681 [TBL] [Abstract][Full Text] [Related]
35. Upgradation of chemical, fuel, thermal, and structural properties of rice husk through microwave-assisted hydrothermal carbonization. Nizamuddin S; Siddiqui MTH; Baloch HA; Mubarak NM; Griffin G; Madapusi S; Tanksale A Environ Sci Pollut Res Int; 2018 Jun; 25(18):17529-17539. PubMed ID: 29663294 [TBL] [Abstract][Full Text] [Related]
36. Conversion of sweet potato waste to solid fuel via hydrothermal carbonization. Chen X; Ma X; Peng X; Lin Y; Yao Z Bioresour Technol; 2018 Feb; 249():900-907. PubMed ID: 29145116 [TBL] [Abstract][Full Text] [Related]
37. Hydrothermal carbonization coupled with anaerobic digestion for the valorization of the organic fraction of municipal solid waste. Lucian M; Volpe M; Merzari F; Wüst D; Kruse A; Andreottola G; Fiori L Bioresour Technol; 2020 Oct; 314():123734. PubMed ID: 32622280 [TBL] [Abstract][Full Text] [Related]
38. Hydrothermal carbonization of biogas digestate: Effect of digestate origin and process conditions. Cao Z; Jung D; Olszewski MP; Arauzo PJ; Kruse A Waste Manag; 2019 Dec; 100():138-150. PubMed ID: 31536924 [TBL] [Abstract][Full Text] [Related]
39. Realization of a solar hydrothermal carbonization reactor: A zero-energy technology for waste biomass valorization. Ischia G; Orlandi M; Fendrich MA; Bettonte M; Merzari F; Miotello A; Fiori L J Environ Manage; 2020 Apr; 259():110067. PubMed ID: 31932267 [TBL] [Abstract][Full Text] [Related]
40. Hydrothermal carbonization of food waste and associated packaging materials for energy source generation. Li L; Diederick R; Flora JR; Berge ND Waste Manag; 2013 Nov; 33(11):2478-92. PubMed ID: 23831005 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]