These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33343081)

  • 1. Flame-made Particles for Sensors, Catalysis, and Energy Storage Applications.
    Pokhrel S; Mädler L
    Energy Fuels; 2020 Nov; 34(11):13209-13224. PubMed ID: 33343081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening Precursor-Solvent Combinations for Li
    Meierhofer F; Li H; Gockeln M; Kun R; Grieb T; Rosenauer A; Fritsching U; Kiefer J; Birkenstock J; Mädler L; Pokhrel S
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37760-37777. PubMed ID: 28960057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The gas-phase formation of tin dioxide nanoparticles in single droplet combustion and flame spray pyrolysis.
    Li H; Pokhrel S; Schowalter M; Rosenauer A; Kiefer J; Mädler L
    Combust Flame; 2020 May; 215():389-400. PubMed ID: 32903291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uniform nanoparticles by flame-assisted spray pyrolysis (FASP) of low cost precursors.
    Rudin T; Wegner K; Pratsinis SE
    J Nanopart Res; 2011 Jul; 13(7):2715-2725. PubMed ID: 23408113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Custom-designed nanomaterial libraries for testing metal oxide toxicity.
    Pokhrel S; Nel AE; Mädler L
    Acc Chem Res; 2013 Mar; 46(3):632-41. PubMed ID: 23194152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of Porous Layer Thickness in Thermophoretic Deposition of Nanoparticles.
    Schalk M; Pokhrel S; Schowalter M; Rosenauer A; Mädler L
    Materials (Basel); 2021 May; 14(9):. PubMed ID: 34064513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flame emission spectroscopy of single droplet micro explosions.
    Groeneveld JD; Pokhrel S; Mädler L
    Nanoscale Horiz; 2024 May; 9(6):956-967. PubMed ID: 38742382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selectivity Enhancement by Using Double-Layer MOX-Based Gas Sensors Prepared by Flame Spray Pyrolysis (FSP).
    Rebholz J; Grossmann K; Pham D; Pokhrel S; Mädler L; Weimar U; Barsan N
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27608028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flame Aerosol Synthesis of Metal Sulfides at High Temperature in Oxygen-Lean Atmosphere.
    Pokhrel S; Stahl J; Groeneveld JD; Schowalter M; Rosenauer A; Birkenstock J; Mädler L
    Adv Mater; 2023 Jul; 35(28):e2211104. PubMed ID: 37029337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Monitoring of the Deposition of Flame-Made Chemoresistive Gas-Sensing Films.
    Blattmann CO; Güntner AT; Pratsinis SE
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23926-23933. PubMed ID: 28621930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-rate production of functional nanostructured films and devices by coupling flame spray pyrolysis with supersonic expansion.
    Wegner K; Vinati S; Piseri P; Antonini A; Zelioli A; Barborini E; Ducati C; Milani P
    Nanotechnology; 2012 May; 23(18):185603. PubMed ID: 22516767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of solvent composition on oxide morphology during flame spray pyrolysis of metal nitrates.
    Strobel R; Pratsinis SE
    Phys Chem Chem Phys; 2011 May; 13(20):9246-52. PubMed ID: 21468418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of Y2O3 particles by flame spray pyrolysis with emulsion.
    Song SA; Jung KY; Park SB
    Langmuir; 2009 Apr; 25(6):3402-6. PubMed ID: 19708237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Palladium embedded in SnO
    Pineau NJ; Keller SD; Güntner AT; Pratsinis SE
    Mikrochim Acta; 2020 Jan; 187(1):96. PubMed ID: 31907635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Perspective on the Flame Spray Synthesis of Photocatalyst Nanoparticles.
    Teoh WY
    Materials (Basel); 2013 Jul; 6(8):3194-3212. PubMed ID: 28811430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas phase temperature measurements in the liquid and particle regime of a flame spray pyrolysis process using O2-based pure rotational coherent anti-Stokes Raman scattering.
    Engel SR; Koegler AF; Gao Y; Kilian D; Voigt M; Seeger T; Peukert W; Leipertz A
    Appl Opt; 2012 Sep; 51(25):6063-75. PubMed ID: 22945152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Determination of Droplet and Nanoparticle Size Distributions in Spray Flame Synthesis by Wide-Angle Light Scattering (WALS).
    Aßmann S; Münsterjohann B; Huber FJT; Will S
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flame Spray Pyrolysis Synthesis of WO
    Wu C; Zhang Y; Yang L; Xiao B; Jiao A; Li K; Chen T; Huang Z; Lin H
    Langmuir; 2022 Dec; 38(50):15506-15515. PubMed ID: 36480753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerosol processing: a wind of innovation in the field of advanced heterogeneous catalysts.
    Debecker DP; Le Bras S; Boissière C; Chaumonnot A; Sanchez C
    Chem Soc Rev; 2018 Jun; 47(11):4112-4155. PubMed ID: 29658544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.