These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 33343308)
1. Noise-Correlation Is Modulated by Reward Expectation in the Primary Motor Cortex Bilaterally During Manual and Observational Tasks in Primates. Moore B; Khang S; Francis JT Front Behav Neurosci; 2020; 14():541920. PubMed ID: 33343308 [TBL] [Abstract][Full Text] [Related]
2. Reward Expectation Modulates Local Field Potentials, Spiking Activity and Spike-Field Coherence in the Primary Motor Cortex. An J; Yadav T; Hessburg JP; Francis JT eNeuro; 2019; 6(3):. PubMed ID: 31171607 [TBL] [Abstract][Full Text] [Related]
3. Toward an autonomous brain machine interface: integrating sensorimotor reward modulation and reinforcement learning. Marsh BT; Tarigoppula VS; Chen C; Francis JT J Neurosci; 2015 May; 35(19):7374-87. PubMed ID: 25972167 [TBL] [Abstract][Full Text] [Related]
4. Mirror neurons are modulated by grip force and reward expectation in the sensorimotor cortices (S1, M1, PMd, PMv). Atique MMU; Francis JT Sci Rep; 2021 Aug; 11(1):15959. PubMed ID: 34354213 [TBL] [Abstract][Full Text] [Related]
5. Reinforcement Learning based Decoding Using Internal Reward for Time Delayed Task in Brain Machine Interfaces. Shen X; Zhang X; Huang Y; Chen S; Wang Y Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3351-3354. PubMed ID: 33018722 [TBL] [Abstract][Full Text] [Related]
6. Near Perfect Neural Critic from Motor Cortical Activity Toward an Autonomously Updating Brain Machine Interface. An J; Yadav T; Ahmadi MB; Tarigoppula VSA; Francis JT Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():73-76. PubMed ID: 30440344 [TBL] [Abstract][Full Text] [Related]
7. Operant conditioning of neural activity in freely behaving monkeys with intracranial reinforcement. Eaton RW; Libey T; Fetz EE J Neurophysiol; 2017 Mar; 117(3):1112-1125. PubMed ID: 28031396 [TBL] [Abstract][Full Text] [Related]
8. Task Learning Over Multi-Day Recording via Internally Rewarded Reinforcement Learning Based Brain Machine Interfaces. Shen X; Zhang X; Huang Y; Chen S; Wang Y IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3089-3099. PubMed ID: 33232240 [TBL] [Abstract][Full Text] [Related]
9. Kernel Temporal Difference based Reinforcement Learning for Brain Machine Interfaces Shen X; Zhang X; Wang Y Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6721-6724. PubMed ID: 34892650 [TBL] [Abstract][Full Text] [Related]
10. The value-complexity trade-off for reinforcement learning based brain-computer interfaces. Levi-Aharoni H; Tishby N J Neural Eng; 2021 Feb; 17(6):066011. PubMed ID: 33586668 [TBL] [Abstract][Full Text] [Related]
11. Intermediate Sensory Feedback Assisted Multi-Step Neural Decoding for Reinforcement Learning Based Brain-Machine Interfaces. Shen X; Zhang X; Huang Y; Chen S; Yu Z; Wang Y IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2834-2844. PubMed ID: 36219654 [TBL] [Abstract][Full Text] [Related]
12. A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task. Suri RE; Schultz W Neuroscience; 1999; 91(3):871-90. PubMed ID: 10391468 [TBL] [Abstract][Full Text] [Related]
13. A neural network model for timing control with reinforcement. Wang J; El-Jayyousi Y; Ozden I Front Comput Neurosci; 2022; 16():918031. PubMed ID: 36277612 [TBL] [Abstract][Full Text] [Related]
14. Estimating Reward Function from Medial Prefrontal Cortex Cortical Activity using Inverse Reinforcement Learning. Tan J; Shen X; Zhang X; Song Z; Wang Y Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3346-3349. PubMed ID: 36086257 [TBL] [Abstract][Full Text] [Related]
15. Neuro-Inspired Reinforcement Learning to Improve Trajectory Prediction in Reward-Guided Behavior. Chen BW; Yang SH; Kuo CH; Chen JW; Lo YC; Kuo YT; Lin YC; Chang HC; Lin SH; Yu X; Qu B; Ro SV; Lai HY; Chen YY Int J Neural Syst; 2022 Sep; 32(9):2250038. PubMed ID: 35989578 [TBL] [Abstract][Full Text] [Related]
16. Different neural correlates of reward expectation and reward expectation error in the putamen and caudate nucleus during stimulus-action-reward association learning. Haruno M; Kawato M J Neurophysiol; 2006 Feb; 95(2):948-59. PubMed ID: 16192338 [TBL] [Abstract][Full Text] [Related]
17. Reward expectation and prediction error in human medial frontal cortex: an EEG study. Silvetti M; Nuñez Castellar E; Roger C; Verguts T Neuroimage; 2014 Jan; 84():376-82. PubMed ID: 24007806 [TBL] [Abstract][Full Text] [Related]
18. Reward value is encoded in primary somatosensory cortex and can be decoded from neural activity during performance of a psychophysical task. McNiel DB; Choi JS; Hessburg JP; Francis JT Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3064-3067. PubMed ID: 28268958 [TBL] [Abstract][Full Text] [Related]
19. Distinct neural representations during a brain-machine interface and manual reaching task in motor cortex, prefrontal cortex, and striatum. Zippi EL; Shvartsman GF; Vendrell-Llopis N; Wallis JD; Carmena JM Sci Rep; 2023 Oct; 13(1):17810. PubMed ID: 37857827 [TBL] [Abstract][Full Text] [Related]