These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33343599)

  • 21. Orientation ofMicroplitis croceipes (Hymenoptera: Braconidae) to green leaf volatiles: Dose-response curves.
    Whitman DW; Eller FJ
    J Chem Ecol; 1992 Oct; 18(10):1743-53. PubMed ID: 24254716
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A New Role For Green Leaf Volatile Esters in Tomato Stomatal Defense Against
    López-Gresa MP; Payá C; Ozáez M; Rodrigo I; Conejero V; Klee H; Bellés JM; Lisón P
    Front Plant Sci; 2018; 9():1855. PubMed ID: 30619420
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Green Leaf Volatiles in Plant Signaling and Response.
    Matsui K; Koeduka T
    Subcell Biochem; 2016; 86():427-43. PubMed ID: 27023245
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Synthesis of Pentyl Leaf Volatiles and Their Role in Resistance to Anthracnose Leaf Blight.
    Gorman Z; Tolley JP; Koiwa H; Kolomiets MV
    Front Plant Sci; 2021; 12():719587. PubMed ID: 34512698
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced attraction of Plutella xylostella (Lepidoptera: Plutellidae) to pheromone-baited traps with the addition of green leaf volatiles.
    Li P; Zhu J; Qin Y
    J Econ Entomol; 2012 Aug; 105(4):1149-56. PubMed ID: 22928292
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptome analysis of the model grass Lolium temulentum exposed to green leaf volatiles.
    Dombrowski JE; Kronmiller BA; Hollenbeck VG; Rhodes AC; Henning JA; Martin RC
    BMC Plant Biol; 2019 May; 19(1):222. PubMed ID: 31138172
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silkworms suppress the release of green leaf volatiles by mulberry leaves with an enzyme from their spinnerets.
    Takai H; Ozawa R; Takabayashi J; Fujii S; Arai K; Ichiki RT; Koeduka T; Dohra H; Ohnishi T; Taketazu S; Kobayashi J; Kainoh Y; Nakamura S; Fujii T; Ishikawa Y; Kiuchi T; Katsuma S; Uefune M; Shimada T; Matsui K
    Sci Rep; 2018 Aug; 8(1):11942. PubMed ID: 30093702
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Behavioral responses of the diamondback moth, Plutella xylostella, to green leaf volatiles of Brassica oleracea subsp. capitata.
    Reddy GV; Guerrero A
    J Agric Food Chem; 2000 Dec; 48(12):6025-9. PubMed ID: 11312775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Emission of herbivore-induced volatiles in absence of a herbivore--response of Zea mays to green leaf volatiles and terpenoids.
    Ruther J; Fürstenau B
    Z Naturforsch C J Biosci; 2005; 60(9-10):743-56. PubMed ID: 16320618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Chemical Insecticide Imidacloprid on the Release of C
    Zhou Q; Cheng X; Wang S; Liu S; Wei C
    Sci Rep; 2019 Jan; 9(1):625. PubMed ID: 30679494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Species and sexual differences in behavioural responses of a specialist and generalist parasitoid species to host-related volatiles.
    Ngumbi E; Fadamiro H
    Bull Entomol Res; 2012 Dec; 102(6):710-8. PubMed ID: 22647466
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Airborne signals prime plants against insect herbivore attack.
    Engelberth J; Alborn HT; Schmelz EA; Tumlinson JH
    Proc Natl Acad Sci U S A; 2004 Feb; 101(6):1781-5. PubMed ID: 14749516
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Variability in the Capacity to Produce Damage-Induced Aldehyde Green Leaf Volatiles among Different Plant Species Provides Novel Insights into Biosynthetic Diversity.
    Engelberth J; Engelberth M
    Plants (Basel); 2020 Feb; 9(2):. PubMed ID: 32041302
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in Arabidopsis thaliana.
    D'Auria JC; Pichersky E; Schaub A; Hansel A; Gershenzon J
    Plant J; 2007 Jan; 49(2):194-207. PubMed ID: 17163881
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conversion of volatile alcohols into their glucosides in Arabidopsis.
    Sugimoto K; Matsui K; Takabayashi J
    Commun Integr Biol; 2015; 8(1):e992731. PubMed ID: 26629260
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and Characterization of (3
    Spyropoulou EA; Dekker HL; Steemers L; van Maarseveen JH; de Koster CG; Haring MA; Schuurink RC; Allmann S
    Front Plant Sci; 2017; 8():1342. PubMed ID: 28824678
    [No Abstract]   [Full Text] [Related]  

  • 37. Herbivorous Caterpillars Can Utilize Three Mechanisms to Alter Green Leaf Volatile Emission.
    Jones AC; Seidl-Adams I; Engelberth J; Hunter CT; Alborn H; Tumlinson JH
    Environ Entomol; 2019 Apr; 48(2):419-425. PubMed ID: 30668656
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of the lipoxygenase/lyase pathway of host-food plants in the host searching behavior of two parasitoid species, Cotesia glomerata and Cotesia plutellae.
    Shiojiri K; Ozawa R; Matsui K; Kishimoto K; Kugimiya S; Takabayashi J
    J Chem Ecol; 2006 May; 32(5):969-79. PubMed ID: 16739017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Herbivory elicits changes in green leaf volatile production via jasmonate signaling and the circadian clock.
    Joo Y; Schuman MC; Goldberg JK; Wissgott A; Kim SG; Baldwin IT
    Plant Cell Environ; 2019 Mar; 42(3):972-982. PubMed ID: 30378135
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 13C-labelling patterns of green leaf volatiles indicating different dynamics of precursors in Brassica leaves.
    Connor EC; Rott AS; Zeder M; Jüttner F; Dorn S
    Phytochemistry; 2008 Apr; 69(6):1304-12. PubMed ID: 18325549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.