These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33343626)

  • 1. Strategies Using Genomic Selection to Increase Genetic Gain in Breeding Programs for Wheat.
    Tessema BB; Liu H; Sørensen AC; Andersen JR; Jensen J
    Front Genet; 2020; 11():578123. PubMed ID: 33343626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accounting for Genotype-by-Environment Interactions and Residual Genetic Variation in Genomic Selection for Water-Soluble Carbohydrate Concentration in Wheat.
    Ovenden B; Milgate A; Wade LJ; Rebetzke GJ; Holland JB
    G3 (Bethesda); 2018 May; 8(6):1909-1919. PubMed ID: 29661842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ADAM-Plant: A Software for Stochastic Simulations of Plant Breeding From Molecular to Phenotypic Level and From Simple Selection to Complex Speed Breeding Programs.
    Liu H; Tessema BB; Jensen J; Cericola F; Andersen JR; Sørensen AC
    Front Plant Sci; 2018; 9():1926. PubMed ID: 30687343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic Gain and Inbreeding from Genomic Selection in a Simulated Commercial Breeding Program for Perennial Ryegrass.
    Lin Z; Cogan NO; Pembleton LW; Spangenberg GC; Forster JW; Hayes BJ; Daetwyler HD
    Plant Genome; 2016 Mar; 9(1):. PubMed ID: 27898764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies of preserving genetic diversity while maximizing genetic response from implementing genomic selection in pulse breeding programs.
    Li Y; Kaur S; Pembleton LW; Valipour-Kahrood H; Rosewarne GM; Daetwyler HD
    Theor Appl Genet; 2022 Jun; 135(6):1813-1828. PubMed ID: 35316351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Different Strategies for Exploiting Genomic Selection in Perennial Ryegrass Breeding Programs.
    Esfandyari H; Fè D; Tessema BB; Janss LL; Jensen J
    G3 (Bethesda); 2020 Oct; 10(10):3783-3795. PubMed ID: 32819970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic selection strategies for clonally propagated crops.
    Werner CR; Gaynor RC; Sargent DJ; Lillo A; Gorjanc G; Hickey JM
    Theor Appl Genet; 2023 Mar; 136(4):74. PubMed ID: 36952013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wheat quality improvement at CIMMYT and the use of genomic selection on it.
    Guzman C; Peña RJ; Singh R; Autrique E; Dreisigacker S; Crossa J; Rutkoski J; Poland J; Battenfield S
    Appl Transl Genom; 2016 Dec; 11():3-8. PubMed ID: 28018844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the benefits and perils of importing genetic material in small cattle breeding programs via simulation.
    Obšteter J; Jenko J; Pocrnic I; Gorjanc G
    J Dairy Sci; 2023 Aug; 106(8):5593-5605. PubMed ID: 37474361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competitive gene flow does not necessarily maximize the genetic gain of genomic breeding programs in the presence of genotype-by-environment interaction.
    Cao L; Mulder HA; Liu H; Nielsen HM; S Rensen AC
    J Dairy Sci; 2021 Jul; 104(7):8122-8134. PubMed ID: 33934864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling Illustrates That Genomic Selection Provides New Opportunities for Intercrop Breeding.
    Bančič J; Werner CR; Gaynor RC; Gorjanc G; Odeny DA; Ojulong HF; Dawson IK; Hoad SP; Hickey JM
    Front Plant Sci; 2021; 12():605172. PubMed ID: 33633761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gains through selection for grain yield in a winter wheat breeding program.
    Lozada DN; Ward BP; Carter AH
    PLoS One; 2020; 15(4):e0221603. PubMed ID: 32343696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential benefits of genomic selection on genetic gain of small ruminant breeding programs.
    Shumbusho F; Raoul J; Astruc JM; Palhiere I; Elsen JM
    J Anim Sci; 2013 Aug; 91(8):3644-57. PubMed ID: 23736059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal implementation of genomic selection in clone breeding programs-Exemplified in potato: I. Effect of selection strategy, implementation stage, and selection intensity on short-term genetic gain.
    Wu PY; Stich B; Renner J; Muders K; Prigge V; van Inghelandt D
    Plant Genome; 2023 Jun; 16(2):e20327. PubMed ID: 37177848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expected benefit of genomic selection over forward selection in conifer breeding and deployment.
    Li Y; Dungey HS
    PLoS One; 2018; 13(12):e0208232. PubMed ID: 30532178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An experimental approach for estimating the genomic selection advantage for Fusarium head blight and Septoria tritici blotch in winter wheat.
    Herter CP; Ebmeyer E; Kollers S; Korzun V; Miedaner T
    Theor Appl Genet; 2019 Aug; 132(8):2425-2437. PubMed ID: 31144000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New cycle, same old mistakes? Overlapping vs. discrete generations in long-term recurrent selection.
    Labroo MR; Rutkoski JE
    BMC Genomics; 2022 Oct; 23(1):736. PubMed ID: 36316650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal strategies for the use of genomic selection in dairy cattle breeding programs.
    Wensch-Dorendorf M; Yin T; Swalve HH; König S
    J Dairy Sci; 2011 Aug; 94(8):4140-51. PubMed ID: 21787949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosting Genetic Gain in Allogamous Crops
    Jighly A; Lin Z; Pembleton LW; Cogan NOI; Spangenberg GC; Hayes BJ; Daetwyler HD
    Front Plant Sci; 2019; 10():1364. PubMed ID: 31803197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imputation of non-genotyped F1 dams to improve genetic gain in swine crossbreeding programs.
    See GM; Fix JS; Schwab CR; Spangler ML
    J Anim Sci; 2022 May; 100(5):. PubMed ID: 35451025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.