These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33343626)

  • 21. Assessment of long-term trends in genetic mean and variance after the introduction of genomic selection in layers: a simulation study.
    Pocrnic I; Obšteter J; Gaynor RC; Wolc A; Gorjanc G
    Front Genet; 2023; 14():1168212. PubMed ID: 37234871
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selection on Expected Maximum Haploid Breeding Values Can Increase Genetic Gain in Recurrent Genomic Selection.
    Müller D; Schopp P; Melchinger AE
    G3 (Bethesda); 2018 Mar; 8(4):1173-1181. PubMed ID: 29434032
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genomic selection for target traits in the Australian lentil breeding program.
    Gebremedhin A; Li Y; Shunmugam ASK; Sudheesh S; Valipour-Kahrood H; Hayden MJ; Rosewarne GM; Kaur S
    Front Plant Sci; 2023; 14():1284781. PubMed ID: 38235201
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A low-marker density implementation of genomic selection in aquaculture using within-family genomic breeding values.
    Lillehammer M; Meuwissen TH; Sonesson AK
    Genet Sel Evol; 2013 Oct; 45(1):39. PubMed ID: 24127852
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimizing Genomic Selection for a Sorghum Breeding Program in Haiti: A Simulation Study.
    Muleta KT; Pressoir G; Morris GP
    G3 (Bethesda); 2019 Feb; 9(2):391-401. PubMed ID: 30530641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Response to Early Generation Genomic Selection for Yield in Wheat.
    Bonnett D; Li Y; Crossa J; Dreisigacker S; Basnet B; Pérez-Rodríguez P; Alvarado G; Jannink JL; Poland J; Sorrells M
    Front Plant Sci; 2021; 12():718611. PubMed ID: 35087542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimum breeding strategies using genomic and phenotypic selection for the simultaneous improvement of two traits.
    Marulanda JJ; Mi X; Utz HF; Melchinger AE; Würschum T; Longin CFH
    Theor Appl Genet; 2021 Dec; 134(12):4025-4042. PubMed ID: 34618174
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genomic selection strategies to increase genetic gain in tea breeding programs.
    Lubanga N; Massawe F; Mayes S; Gorjanc G; Bančič J
    Plant Genome; 2023 Mar; 16(1):e20282. PubMed ID: 36349831
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Training Population Design With the Use of Regional Fusarium Head Blight Nurseries to Predict Independent Breeding Lines for FHB Traits.
    Verges VL; Lyerly J; Dong Y; Van Sanford DA
    Front Plant Sci; 2020; 11():1083. PubMed ID: 32765564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic Gain Increases by Applying the Usefulness Criterion with Improved Variance Prediction in Selection of Crosses.
    Lehermeier C; Teyssèdre S; Schön CC
    Genetics; 2017 Dec; 207(4):1651-1661. PubMed ID: 29038144
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selection of parental lines for plant breeding
    Chung PY; Liao CT
    Front Plant Sci; 2022; 13():934767. PubMed ID: 35968112
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genomic Selection for Processing and End-Use Quality Traits in the CIMMYT Spring Bread Wheat Breeding Program.
    Battenfield SD; Guzmán C; Gaynor RC; Singh RP; Peña RJ; Dreisigacker S; Fritz AK; Poland JA
    Plant Genome; 2016 Jul; 9(2):. PubMed ID: 27898810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimal cross selection for long-term genetic gain in two-part programs with rapid recurrent genomic selection.
    Gorjanc G; Gaynor RC; Hickey JM
    Theor Appl Genet; 2018 Sep; 131(9):1953-1966. PubMed ID: 29876589
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of multiple traits genomic prediction, genotype by environment interactions and spatial effect to improve prediction accuracy in yield data.
    Tsai HY; Cericola F; Edriss V; Andersen JR; Orabi J; Jensen JD; Jahoor A; Janss L; Jensen J
    PLoS One; 2020; 15(5):e0232665. PubMed ID: 32401769
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genomic selection in wheat: optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding.
    Longin CF; Mi X; Würschum T
    Theor Appl Genet; 2015 Jul; 128(7):1297-306. PubMed ID: 25877519
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genomic assisted selection for enhancing line breeding: merging genomic and phenotypic selection in winter wheat breeding programs with preliminary yield trials.
    Michel S; Ametz C; Gungor H; Akgöl B; Epure D; Grausgruber H; Löschenberger F; Buerstmayr H
    Theor Appl Genet; 2017 Feb; 130(2):363-376. PubMed ID: 27826661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of superior parental lines for biparental crossing via genomic prediction.
    Chung PY; Liao CT
    PLoS One; 2020; 15(12):e0243159. PubMed ID: 33270706
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The power of genomic estimated breeding values for selection when using a finite population size in genetic improvement of tetraploid potato.
    Selga C; Reslow F; Pérez-Rodríguez P; Ortiz R
    G3 (Bethesda); 2022 Jan; 12(1):. PubMed ID: 34849763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimizing genomic selection of agricultural traits using K-wheat core collection.
    Kang Y; Choi C; Kim JY; Min KD; Kim C
    Front Plant Sci; 2023; 14():1112297. PubMed ID: 37389296
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oracle selection provides insight into how far off practice is from Utopia in plant breeding.
    Vanavermaete D; Maenhout S; Fostier J; De Baets B
    Front Plant Sci; 2023; 14():1218665. PubMed ID: 37546253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.