These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 33343781)
1. SAW-driven droplet jetting technology in microfluidic: A review. Lei Y; Hu H Biomicrofluidics; 2020 Nov; 14(6):061505. PubMed ID: 33343781 [TBL] [Abstract][Full Text] [Related]
2. Surface acoustic wave microfluidics. Ding X; Li P; Lin SC; Stratton ZS; Nama N; Guo F; Slotcavage D; Mao X; Shi J; Costanzo F; Huang TJ Lab Chip; 2013 Sep; 13(18):3626-49. PubMed ID: 23900527 [TBL] [Abstract][Full Text] [Related]
3. Simulations of surface acoustic wave interactions on a sessile droplet using a three-dimensional multiphase lattice Boltzmann model. Burnside SB; Pasieczynski K; Zarareh A; Mehmood M; Fu YQ; Chen B Phys Rev E; 2021 Oct; 104(4-2):045301. PubMed ID: 34781429 [TBL] [Abstract][Full Text] [Related]
4. A Comprehensive Review of Surface Acoustic Wave-Enabled Acoustic Droplet Ejection Technology and Its Applications. Ning J; Lei Y; Hu H; Gai C Micromachines (Basel); 2023 Jul; 14(8):. PubMed ID: 37630082 [TBL] [Abstract][Full Text] [Related]
5. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves. Destgeer G; Sung HJ Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538 [TBL] [Abstract][Full Text] [Related]
6. The complexity of surface acoustic wave fields used for microfluidic applications. Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142 [TBL] [Abstract][Full Text] [Related]
9. Demand-driven active droplet generation and sorting based on positive pressure-controlled fluid wall. Zhang Y; Lin Y; Hong X; Di C; Xin Y; Wang X; Qi S; Liu BF; Zhang Z; Du W Anal Bioanal Chem; 2023 Sep; 415(22):5311-5322. PubMed ID: 37392212 [TBL] [Abstract][Full Text] [Related]
10. Ultrasonic surface acoustic wave-assisted separation of microscale droplets with varying acoustic impedance. Ali M; Park J Ultrason Sonochem; 2023 Feb; 93():106305. PubMed ID: 36706667 [TBL] [Abstract][Full Text] [Related]
11. Aerosol jet printing of surface acoustic wave microfluidic devices. Rich J; Cole B; Li T; Lu B; Fu H; Smith BN; Xia J; Yang S; Zhong R; Doherty JL; Kaneko K; Suzuki H; Tian Z; Franklin AD; Huang TJ Microsyst Nanoeng; 2024; 10():2. PubMed ID: 38169478 [TBL] [Abstract][Full Text] [Related]
12. Surface acoustic wave manipulation of bioparticles. Qi M; Dang D; Yang X; Wang J; Zhang H; Liang W Soft Matter; 2023 Jun; 19(23):4166-4187. PubMed ID: 37212436 [TBL] [Abstract][Full Text] [Related]
13. High throughput single-cell and multiple-cell micro-encapsulation. Lagus TP; Edd JF J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254 [TBL] [Abstract][Full Text] [Related]
14. The fluid property dependency on micro-fluidic characteristics in the deposition process for microfabrication. Chau SW; Hsu KL; Chen SC; Liou TM; Shih KC Biosens Bioelectron; 2004 Jul; 20(1):133-8. PubMed ID: 15142586 [TBL] [Abstract][Full Text] [Related]
15. Mode Transition of Droplet Formation in a Semi-3D Flow-Focusing Microfluidic Droplet System. Wu Y; Qian X; Zhang M; Dong Y; Sun S; Wang X Micromachines (Basel); 2018 Mar; 9(4):. PubMed ID: 30424073 [TBL] [Abstract][Full Text] [Related]
16. Acoustic Biosensors and Microfluidic Devices in the Decennium: Principles and Applications. Nair MP; Teo AJT; Li KHH Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056189 [TBL] [Abstract][Full Text] [Related]
17. Experimental research on surface acoustic wave microfluidic atomization for drug delivery. Huang QY; Le Y; Hu H; Wan ZJ; Ning J; Han JL Sci Rep; 2022 May; 12(1):7930. PubMed ID: 35562384 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of double emulsion break-up in three phase glass capillary microfluidic devices. Nabavi SA; Gu S; Vladisavljević GT; Ekanem EE J Colloid Interface Sci; 2015 Jul; 450():279-287. PubMed ID: 25828435 [TBL] [Abstract][Full Text] [Related]