These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33343998)

  • 41. Sputtering-deposition of Ru nanoparticles onto Al2O3 modified with imidazolium ionic liquids: synthesis, characterisation and catalysis.
    Foppa L; Luza L; Gual A; Weibel DE; Eberhardt D; Teixeira SR; Dupont J
    Dalton Trans; 2015 Feb; 44(6):2827-34. PubMed ID: 25531917
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rhodium nanoparticles inside well-defined unimolecular amphiphilic polymeric nanoreactors: synthesis and biphasic hydrogenation catalysis.
    Wang H; Fiore AM; Fliedel C; Manoury E; Philippot K; Dell'Anna MM; Mastrorilli P; Poli R
    Nanoscale Adv; 2021 May; 3(9):2554-2566. PubMed ID: 36134168
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Polysilane-Immobilized Rh-Pt Bimetallic Nanoparticles as Powerful Arene Hydrogenation Catalysts: Synthesis, Reactions under Batch and Flow Conditions and Reaction Mechanism.
    Miyamura H; Suzuki A; Yasukawa T; Kobayashi S
    J Am Chem Soc; 2018 Sep; 140(36):11325-11334. PubMed ID: 30080963
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Combination of supported bimetallic rhodium-molybdenum catalyst and cerium oxide for hydrogenation of amide.
    Nakagawa Y; Tamura R; Tamura M; Tomishige K
    Sci Technol Adv Mater; 2015 Feb; 16(1):014901. PubMed ID: 27877749
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature.
    Günbatar S; Aygun A; Karataş Y; Gülcan M; Şen F
    J Colloid Interface Sci; 2018 Nov; 530():321-327. PubMed ID: 29982024
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Product Selectivity Controlled by Nanoporous Environments in Zeolite Crystals Enveloping Rhodium Nanoparticle Catalysts for CO
    Wang C; Guan E; Wang L; Chu X; Wu Z; Zhang J; Yang Z; Jiang Y; Zhang L; Meng X; Gates BC; Xiao FS
    J Am Chem Soc; 2019 May; 141(21):8482-8488. PubMed ID: 31063372
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Highly modulated supported triazolium-based ionic liquids: direct control of the electronic environment on Cu nanoparticles.
    Valdebenito C; Pinto J; Nazarkovsky M; Chacón G; Martínez-Ferraté O; Wrighton-Araneda K; Cortés-Arriagada D; Camarada MB; Alves Fernandes J; Abarca G
    Nanoscale Adv; 2020 Mar; 2(3):1325-1332. PubMed ID: 36133065
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ionic liquid-Pluronic P123 mixed micelle stabilized water-soluble Ni nanoparticles for catalytic hydrogenation.
    Yu Y; Zhu W; Hua L; Yang H; Qiao Y; Zhang R; Guo L; Zhao X; Hou Z
    J Colloid Interface Sci; 2014 Feb; 415():117-26. PubMed ID: 24267338
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Insight into the mechanism of hydrogenation of amino acids to amino alcohols catalyzed by a heterogeneous MoO(x) -modified Rh catalyst.
    Tamura M; Tamura R; Takeda Y; Nakagawa Y; Tomishige K
    Chemistry; 2015 Feb; 21(7):3097-107. PubMed ID: 25556992
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Elucidating the ionic liquid distribution in monolithic SILP hydroformylation catalysts by magnetic resonance imaging.
    Marinkovic JM; Benders S; Garcia-Suarez EJ; Weiß A; Gundlach C; Haumann M; Küppers M; Blümich B; Fehrmann R; Riisager A
    RSC Adv; 2020 May; 10(31):18487-18495. PubMed ID: 35517184
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Selective hydrodeoxygenation of hydroxyacetophenones to ethyl-substituted phenol derivatives using a FeRu@SILP catalyst.
    Goclik L; Offner-Marko L; Bordet A; Leitner W
    Chem Commun (Camb); 2020 Aug; 56(66):9509-9512. PubMed ID: 32686801
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Aqueous hydrodechlorination of 4-chlorophenol over an Rh/reduced graphene oxide synthesized by a facile one-pot solvothermal process under mild conditions.
    Ren Y; Fan G; Wang C
    J Hazard Mater; 2014 Jun; 274():32-40. PubMed ID: 24762698
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bringing Homogeneous Iron Catalysts on the Heterogeneous Side: Solutions for Immobilization.
    Moccia F; Rigamonti L; Messori A; Zanotti V; Mazzoni R
    Molecules; 2021 May; 26(9):. PubMed ID: 34066456
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis of 2-Butanol by Selective Hydrogenolysis of 1,4-Anhydroerythritol over Molybdenum Oxide-Modified Rhodium-Supported Silica.
    Arai T; Tamura M; Nakagawa Y; Tomishige K
    ChemSusChem; 2016 Jul; 9(13):1680-8. PubMed ID: 27226396
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultrahigh Catalytic Activity of l-Proline-Functionalized Rh Nanoparticles for Methanolysis of Ammonia Borane.
    Luo W; Cheng W; Hu M; Wang Q; Cheng X; Zhang Y; Wang Y; Gao D; Bi J; Fan G
    ChemSusChem; 2019 Jan; 12(2):535-541. PubMed ID: 30383321
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multi-walled carbon nanotube-based composite materials as catalyst support for water-gas shift and hydroformylation reactions.
    Wolf P; Logemann M; Schörner M; Keller L; Haumann M; Wessling M
    RSC Adv; 2019 Aug; 9(47):27732-27742. PubMed ID: 35529233
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Au-Rh and Au-Pd nanocatalysts supported on rutile titania nanorods: structure and chemical stability.
    Konuspayeva Z; Afanasiev P; Nguyen TS; Di Felice L; Morfin F; Nguyen NT; Nelayah J; Ricolleau C; Li ZY; Yuan J; Berhault G; Piccolo L
    Phys Chem Chem Phys; 2015 Nov; 17(42):28112-20. PubMed ID: 25765742
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Water Purification and Microplastics Removal Using Magnetic Polyoxometalate-Supported Ionic Liquid Phases (magPOM-SILPs).
    Misra A; Zambrzycki C; Kloker G; Kotyrba A; Anjass MH; Franco Castillo I; Mitchell SG; Güttel R; Streb C
    Angew Chem Int Ed Engl; 2020 Jan; 59(4):1601-1605. PubMed ID: 31639241
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of different imidazolium supported ionic liquid polymeric phases with strong anion-exchange character for the extraction of acidic pharmaceuticals from complex environmental samples.
    Bratkowska D; Fontanals N; Ronka S; Trochimczuk AW; Borrull F; Marcé RM
    J Sep Sci; 2012 Aug; 35(15):1953-8. PubMed ID: 22865758
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Aggregation control of Ru and Ir nanoparticles by tunable aryl alkyl imidazolium ionic liquids.
    Schmolke L; Lerch S; Bülow M; Siebels M; Schmitz A; Thomas J; Dehm G; Held C; Strassner T; Janiak C
    Nanoscale; 2019 Mar; 11(9):4073-4082. PubMed ID: 30778483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.