These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33344120)

  • 1. Achieving Ultrahigh Output Energy Density of Triboelectric Nanogenerators in High-Pressure Gas Environment.
    Fu J; Xu G; Li C; Xia X; Guan D; Li J; Huang Z; Zi Y
    Adv Sci (Weinh); 2020 Dec; 7(24):2001757. PubMed ID: 33344120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Achieving ultrahigh triboelectric charge density for efficient energy harvesting.
    Wang J; Wu C; Dai Y; Zhao Z; Wang A; Zhang T; Wang ZL
    Nat Commun; 2017 Jul; 8(1):88. PubMed ID: 28729530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Maximal Output Energy Density of Nanogenerators.
    Fu J; Xia X; Xu G; Li X; Zi Y
    ACS Nano; 2019 Nov; 13(11):13257-13263. PubMed ID: 31609574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achieving Ultrahigh Effective Surface Charge Density of Direct-Current Triboelectric Nanogenerator in High Humidity.
    Liu L; Zhao Z; Li Y; Li X; Liu D; Li S; Gao Y; Zhou L; Wang J; Wang ZL
    Small; 2022 Jun; 18(24):e2201402. PubMed ID: 35560726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inductor-Free Output Multiplier for Power Promotion and Management of Triboelectric Nanogenerators toward Self-Powered Systems.
    Xia X; Wang H; Basset P; Zhu Y; Zi Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5892-5900. PubMed ID: 31913007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Durable and High-Performance Triboelectric Nanogenerator Based on an Inorganic Triboelectric Pair of Diamond-Like-Carbon and Glass.
    Li W; Lu L; Zhang C; Loos K; Pei Y
    Adv Sci (Weinh); 2024 Sep; 11(33):e2309170. PubMed ID: 38952062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achieving Remarkable Charge Density via Self-Polarization of Polar High-k Material in a Charge-Excitation Triboelectric Nanogenerator.
    Wu H; He W; Shan C; Wang Z; Fu S; Tang Q; Guo H; Du Y; Liu W; Hu C
    Adv Mater; 2022 Apr; 34(13):e2109918. PubMed ID: 35081267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the Output Performance of a Triboelectric Nanogenerator Based on Modified Polyimide and Sandwich-Structured Nanocomposite Film.
    Zhou J; Lu C; Lan D; Zhang Y; Lin Y; Wan L; Wei W; Liang Y; Guo D; Liu Y; Yu W
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of PI/PVDF-TrFE Composite Nanofiber-Based Triboelectric Nanogenerators Depending on the Type of the Electrospinning System.
    Kim Y; Wu X; Lee C; Oh JH
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):36967-36975. PubMed ID: 34339166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Ultrarobust and High-Performance Rotational Hydrodynamic Triboelectric Nanogenerator Enabled by Automatic Mode Switching and Charge Excitation.
    Fu S; He W; Tang Q; Wang Z; Liu W; Li Q; Shan C; Long L; Hu C; Liu H
    Adv Mater; 2022 Jan; 34(2):e2105882. PubMed ID: 34617342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triboelectric Nanogenerators Made of Porous Polyamide Nanofiber Mats and Polyimide Aerogel Film: Output Optimization and Performance in Circuits.
    Mi HY; Jing X; Meador MAB; Guo H; Turng LS; Gong S
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30596-30606. PubMed ID: 30114352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Output Performance and Ultra-Durable DC Output for Triboelectric Nanogenerator Inspired by Primary Cell.
    Fu S; He W; Wu H; Shan C; Du Y; Li G; Wang P; Guo H; Chen J; Hu C
    Nanomicro Lett; 2022 Aug; 14(1):155. PubMed ID: 35916998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors.
    Wang ZL
    ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gas-liquid two-phase flow-based triboelectric nanogenerator with ultrahigh output power.
    Dong Y; Xu S; Zhang C; Zhang L; Wang D; Xie Y; Luo N; Feng Y; Wang N; Feng M; Zhang X; Zhou F; Wang ZL
    Sci Adv; 2022 Dec; 8(48):eadd0464. PubMed ID: 36449611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of Dielectric Surface Effect into Volume Effect for High Output Energy.
    Fu S; Wu H; He W; Li Q; Shan C; Wang J; Du Y; Du S; Huang Z; Hu C
    Adv Mater; 2023 Oct; 35(40):e2302954. PubMed ID: 37354126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boosting the Efficient Energy Output of Electret Nanogenerators by Suppressing Air Breakdown under Ambient Conditions.
    Xu Z; Duan J; Li W; Wu N; Pan Y; Lin S; Li J; Yuan F; Chen S; Huang L; Hu B; Zhou J
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):3984-3989. PubMed ID: 30604618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density-of-States Matching-Induced Ultrahigh Current Density and High-Humidity Resistance in a Simply Structured Triboelectric Nanogenerator.
    Sun Q; Liang F; Ren G; Zhang L; He S; Gao K; Gong Z; Zhang Y; Kang X; Zhu C; Song Y; Sheng H; Lu G; Yu HD; Huang W
    Adv Mater; 2023 Apr; 35(14):e2210915. PubMed ID: 36637346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rationally patterned electrode of direct-current triboelectric nanogenerators for ultrahigh effective surface charge density.
    Zhao Z; Dai Y; Liu D; Zhou L; Li S; Wang ZL; Wang J
    Nat Commun; 2020 Dec; 11(1):6186. PubMed ID: 33273477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Performance Rotating Triboelectric Nanogenerator with Coaxial Rolling Charge Pump Strategy.
    Hao C; Qi B; Wang Z; Cai M; Cui J; Zheng Y
    Micromachines (Basel); 2023 Nov; 14(12):. PubMed ID: 38138329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multi-dielectric-layered triboelectric nanogenerator as energized by corona discharge.
    Shao JJ; Tang W; Jiang T; Chen XY; Xu L; Chen BD; Zhou T; Deng CR; Wang ZL
    Nanoscale; 2017 Jul; 9(27):9668-9675. PubMed ID: 28675240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.