These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 333446)
21. Reconstitution of active catalytic trimer of aspartate transcarbamoylase from proteolytically cleaved polypeptide chains. Powers VM; Yang YR; Fogli MJ; Schachman HK Protein Sci; 1993 Jun; 2(6):1001-12. PubMed ID: 8318885 [TBL] [Abstract][Full Text] [Related]
23. Hybridization as a technique for studying interchain interactions in the catalytic trimers of aspartate transcarbamoylase. Yang YR; Schachman HK Anal Biochem; 1987 May; 163(1):188-95. PubMed ID: 3039866 [TBL] [Abstract][Full Text] [Related]
24. Catalytic-regulatory subunit interactions and allosteric effects in aspartate transcarbamylase. Ladjimi MM; Kantrowitz ER J Biol Chem; 1987 Jan; 262(1):312-8. PubMed ID: 3539935 [TBL] [Abstract][Full Text] [Related]
25. Changes in the hydrogen exchange kinetics of Escherichia coli aspartate transcarbamylase produced by effector binding and subunit association. Lennick M; Allewell NM Proc Natl Acad Sci U S A; 1981 Nov; 78(11):6759-63. PubMed ID: 7031660 [TBL] [Abstract][Full Text] [Related]
26. Alteration of the allosteric properties of aspartate transcarbamoylase by pyridoxylation of the catalytic and regulatory subunits. Blackburn MN; Schachman HK Biochemistry; 1976 Mar; 15(6):1316-23. PubMed ID: 766834 [TBL] [Abstract][Full Text] [Related]
27. In vivo formation of active aspartate transcarbamoylase from complementing fragments of the catalytic polypeptide chains. Yang YR; Schachman HK Protein Sci; 1993 Jun; 2(6):1013-23. PubMed ID: 8318886 [TBL] [Abstract][Full Text] [Related]
28. A 70-amino acid zinc-binding polypeptide fragment from the regulatory chain of aspartate transcarbamoylase causes marked changes in the kinetic mechanism of the catalytic trimer. Zhou BB; Waldrop GL; Lum L; Schachman HK Protein Sci; 1994 Jun; 3(6):967-74. PubMed ID: 8069226 [TBL] [Abstract][Full Text] [Related]
29. In vivo formation of allosteric aspartate transcarbamoylase containing circularly permuted catalytic polypeptide chains: implications for protein folding and assembly. Zhang P; Schachman HK Protein Sci; 1996 Jul; 5(7):1290-300. PubMed ID: 8819162 [TBL] [Abstract][Full Text] [Related]
30. 2.5 A structure of aspartate carbamoyltransferase complexed with the bisubstrate analog N-(phosphonacetyl)-L-aspartate. Krause KL; Volz KW; Lipscomb WN J Mol Biol; 1987 Feb; 193(3):527-53. PubMed ID: 3586030 [TBL] [Abstract][Full Text] [Related]
31. Divergent allosteric patterns verify the regulatory paradigm for aspartate transcarbamylase. Wales ME; Madison LL; Glaser SS; Wild JR J Mol Biol; 1999 Dec; 294(5):1387-400. PubMed ID: 10600393 [TBL] [Abstract][Full Text] [Related]
32. Negative complementation in aspartate transcarbamylase. Analysis of hybrid enzyme molecules containing different arrangements of polypeptide chains from wild-type and inactive mutant catalytic subunits. Eisenstein E; Han MS; Woo TS; Ritchey JM; Gibbons I; Yang YR; Schachman HK J Biol Chem; 1992 Nov; 267(31):22148-55. PubMed ID: 1429567 [TBL] [Abstract][Full Text] [Related]
33. On conformational changes in the regulatory enzyme aspartate transcarbamoylase. Cohen RE; Foote J; Schachman HK Curr Top Cell Regul; 1985; 26():177-90. PubMed ID: 3907993 [TBL] [Abstract][Full Text] [Related]
34. Weakening of the interface between adjacent catalytic chains promotes domain closure in Escherichia coli aspartate transcarbamoylase. Baker DP; Fetler L; Keiser RT; Vachette P; Kantrowitz ER Protein Sci; 1995 Feb; 4(2):258-67. PubMed ID: 7757014 [TBL] [Abstract][Full Text] [Related]
35. Pathways of assembly of aspartate transcarbamoylase from catalytic and regulatory subunits. Bothwell M; Schachman HK Proc Natl Acad Sci U S A; 1974 Aug; 71(8):3221-5. PubMed ID: 4606892 [TBL] [Abstract][Full Text] [Related]
36. Shared active sites in oligomeric enzymes: model studies with defective mutants of aspartate transcarbamoylase produced by site-directed mutagenesis. Wente SR; Schachman HK Proc Natl Acad Sci U S A; 1987 Jan; 84(1):31-5. PubMed ID: 3540957 [TBL] [Abstract][Full Text] [Related]
37. Differential scanning calorimetry of asparate transcarbamoylase and its isolate subunits. Vickers LP; Donovan JW; Schachman HK J Biol Chem; 1978 Dec; 253(23):8493-8. PubMed ID: 361743 [TBL] [Abstract][Full Text] [Related]
38. Insights into the mechanisms of catalysis and heterotropic regulation of Escherichia coli aspartate transcarbamoylase based upon a structure of the enzyme complexed with the bisubstrate analogue N-phosphonacetyl-L-aspartate at 2.1 A. Jin L; Stec B; Lipscomb WN; Kantrowitz ER Proteins; 1999 Dec; 37(4):729-42. PubMed ID: 10651286 [TBL] [Abstract][Full Text] [Related]
39. The influence of quaternary structure on the active site of an oligomeric enzyme. Catalytic subunit of aspartate transcarbamoylase. Lahue RS; Schachman HK J Biol Chem; 1984 Nov; 259(22):13906-13. PubMed ID: 6389536 [TBL] [Abstract][Full Text] [Related]
40. Concerted allosteric transition in hybrids of aspartate transcarbamoylase containing different arrangements of active and inactive sites. Gibbons I; Ritchey JM; Schachman HK Biochemistry; 1976 Mar; 15(6):1324-30. PubMed ID: 766835 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]