These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33344824)

  • 1. Structure and Formation Mechanism of Methane Explosion Soot.
    Nie B; Peng C; Wang K; Yang L
    ACS Omega; 2020 Dec; 5(49):31716-31723. PubMed ID: 33344824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soot Formation in Methane Pyrolysis Reactor: Modeling Soot Growth and Particle Characterization.
    Shirsath AB; Mokashi M; Lott P; Müller H; Pashminehazar R; Sheppard T; Tischer S; Maier L; Grunwaldt JD; Deutschmann O
    J Phys Chem A; 2023 Mar; 127(9):2136-2147. PubMed ID: 36848592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research on soot of black smoke from ceramic furnace flue gas: characterization of soot.
    Lu P; Li C; Zeng G; Xie X; Cai Z; Zhou Y; Zhao Y; Zhan Q; Zeng Z
    J Hazard Mater; 2012 Jan; 199-200():272-81. PubMed ID: 22138172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment: mechanistic considerations.
    Jonker MT; Koelmans AA
    Environ Sci Technol; 2002 Sep; 36(17):3725-34. PubMed ID: 12322744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructure Transition of Young Soot Aggregates to Mature Soot Aggregates in Diluted Diffusion Flames.
    Davis J; Molnar E; Novosselov I
    Carbon N Y; 2020 Apr; 159():255-265. PubMed ID: 32863394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative high-resolution mapping of phenanthrene sorption to black carbon particles.
    Obst M; Grathwohl P; Kappler A; Eibl O; Peranio N; Gocht T
    Environ Sci Technol; 2011 Sep; 45(17):7314-22. PubMed ID: 21755998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-lapse visualization of shrinking soot in diesel particulate filter during active-regeneration using field emission scanning electron microscopy.
    Srilomsak M; Hanamura K
    J Microsc; 2020 Aug; 279(2):85-97. PubMed ID: 32415865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Desorption of polycyclic aromatic hydrocarbons from a soot surface: three- to five-ring PAHs.
    Guilloteau A; Bedjanian Y; Nguyen ML; Tomas A
    J Phys Chem A; 2010 Jan; 114(2):942-8. PubMed ID: 19925003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of diesel engine combustion parameters on primary soot particle diameter.
    Mathis U; Mohr M; Kaegi R; Bertola A; Boulouchos K
    Environ Sci Technol; 2005 Mar; 39(6):1887-92. PubMed ID: 15819252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between the Geological Origins of Pore-Fracture and Methane Adsorption Behaviors in High-Rank Coal.
    Han S; Zhou X; Zhang J; Xiang W; Xu A
    ACS Omega; 2022 Mar; 7(9):8091-8102. PubMed ID: 35284768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Acetylene Addition to the Fuel Stream on Soot Formation and Flame Properties in an Axisymmetric Laminar Coflow Ethylene/Air Diffusion Flame.
    Xie X; Zheng S; Sui R; Luo Z; Liu S; Consalvi JL
    ACS Omega; 2021 Apr; 6(15):10371-10382. PubMed ID: 34056190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of the reactions of soot surface-bound polycyclic aromatic hydrocarbons with O3.
    Bedjanian Y; Nguyen ML
    Chemosphere; 2010 Apr; 79(4):387-93. PubMed ID: 20188392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Air-sea exchange and gas-particle partitioning of polycyclic aromatic hydrocarbons over the northwestern Pacific Ocean: Role of East Asian continental outflow.
    Wu Z; Lin T; Li Z; Jiang Y; Li Y; Yao X; Gao H; Guo Z
    Environ Pollut; 2017 Nov; 230():444-452. PubMed ID: 28675854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Drive Cycle and Gasoline Particulate Filter on the Size and Morphology of Soot Particles Emitted from a Gasoline-Direct-Injection Vehicle.
    Saffaripour M; Chan TW; Liu F; Thomson KA; Smallwood GJ; Kubsh J; Brezny R
    Environ Sci Technol; 2015 Oct; 49(19):11950-8. PubMed ID: 26340691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular characterization of organic content of soot along the centerline of a coflow diffusion flame.
    Cain J; Laskin A; Kholghy MR; Thomson MJ; Wang H
    Phys Chem Chem Phys; 2014 Dec; 16(47):25862-75. PubMed ID: 25354231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of fuel injection timing and pressure on in-flame soot particles in an automotive-size diesel engine.
    Zhang R; Kook S
    Environ Sci Technol; 2014 Jul; 48(14):8243-50. PubMed ID: 24933154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between Coating-Induced Soot Aggregate Restructuring and Primary Particle Number.
    Leung KK; Schnitzler EG; Dastanpour R; Rogak SN; Jäger W; Olfert JS
    Environ Sci Technol; 2017 Aug; 51(15):8376-8383. PubMed ID: 28661663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity of wood smoke particles in human A549 lung epithelial cells: the role of PAHs, soot and zinc.
    Dilger M; Orasche J; Zimmermann R; Paur HR; Diabaté S; Weiss C
    Arch Toxicol; 2016 Dec; 90(12):3029-3044. PubMed ID: 26838041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological and semi-quantitative characteristics of diesel soot agglomerates emitted from commercial vehicles and a dynamometer.
    Luo CH; Lee WM; Liaw JJ
    J Environ Sci (China); 2009; 21(4):452-7. PubMed ID: 19634419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafine particle emissions from modern Gasoline and Diesel vehicles: An electron microscopic perspective.
    Liati A; Schreiber D; Arroyo Rojas Dasilva Y; Dimopoulos Eggenschwiler P
    Environ Pollut; 2018 Aug; 239():661-669. PubMed ID: 29709837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.