These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 33344945)
1. The Location of the Center of Pressure on the Starting Block Is Related to Sprint Start Performance. Nagahara R; Ohshima Y Front Sports Act Living; 2019; 1():21. PubMed ID: 33344945 [TBL] [Abstract][Full Text] [Related]
2. Improvement in sprint start performance by modulating an initial loading location on the starting blocks. Nagahara R; Gleadhill S; Ohshima Y J Sports Sci; 2020 Nov; 38(21):2437-2445. PubMed ID: 32608346 [TBL] [Abstract][Full Text] [Related]
3. Anthropometry-driven block setting improves starting block performance in sprinters. Cavedon V; Sandri M; Pirlo M; Petrone N; Zancanaro C; Milanese C PLoS One; 2019; 14(3):e0213979. PubMed ID: 30917173 [TBL] [Abstract][Full Text] [Related]
4. Biomechanical Differences in the Sprint Start Between Faster and Slower High-Level Sprinters. Čoh M; Peharec S; Bačić P; Mackala K J Hum Kinet; 2017 Feb; 56():29-38. PubMed ID: 28469741 [TBL] [Abstract][Full Text] [Related]
5. Effect of different anthropometry-driven block settings on sprint start performance. Cavedon V; Bezodis NE; Sandri M; Golia S; Zancanaro C; Milanese C Eur J Sport Sci; 2023 Jul; 23(7):1110-1120. PubMed ID: 36453590 [No Abstract] [Full Text] [Related]
6. Kinematic and kinetic comparisons of elite and well-trained sprinters during sprint start. Slawinski J; Bonnefoy A; Levêque JM; Ontanon G; Riquet A; Dumas R; Chèze L J Strength Cond Res; 2010 Apr; 24(4):896-905. PubMed ID: 19935105 [TBL] [Abstract][Full Text] [Related]
7. Calculation of the centre of pressure on the athletic starting block. Ohshima Y; Bezodis NE; Nagahara R Sports Biomech; 2021 Jun; 20(4):481-494. PubMed ID: 30693842 [TBL] [Abstract][Full Text] [Related]
8. Effect of expertise on 3D force application during the starting block phase and subsequent steps in sprint running. Otsuka M; Shim JK; Kurihara T; Yoshioka S; Nokata M; Isaka T J Appl Biomech; 2014 Jun; 30(3):390-400. PubMed ID: 24615252 [TBL] [Abstract][Full Text] [Related]
9. Understanding the track and field sprint start through a functional analysis of the external force features which contribute to higher levels of block phase performance. Bezodis NE; Walton SP; Nagahara R J Sports Sci; 2019 Mar; 37(5):560-567. PubMed ID: 30306822 [TBL] [Abstract][Full Text] [Related]
10. Effects of muscle-tendon length on joint moment and power during sprint starts. Mero A; Kuitunen S; Harland M; Kyröläinen H; Komi PV J Sports Sci; 2006 Feb; 24(2):165-73. PubMed ID: 16368626 [TBL] [Abstract][Full Text] [Related]
11. Gender-Related Differences in Mechanics of the Sprint Start and Sprint Acceleration of Top National-Level Sprinters. Mirkov DM; Knezevic OM; Garcia-Ramos A; Čoh M; Šarabon N Int J Environ Res Public Health; 2020 Sep; 17(18):. PubMed ID: 32899837 [TBL] [Abstract][Full Text] [Related]
12. Jump kinetic determinants of sprint acceleration performance from starting blocks in male sprinters. Maulder PS; Bradshaw EJ; Keogh J J Sports Sci Med; 2006; 5(2):359-66. PubMed ID: 24260010 [TBL] [Abstract][Full Text] [Related]
13. Lower limb joint kinetics in the starting blocks and first stance in athletic sprinting. Brazil A; Exell T; Wilson C; Willwacher S; Bezodis I; Irwin G J Sports Sci; 2017 Aug; 35(16):1629-1635. PubMed ID: 27598715 [TBL] [Abstract][Full Text] [Related]
14. Ground reaction force across the transition during sprint acceleration. Nagahara R; Kanehisa H; Fukunaga T Scand J Med Sci Sports; 2020 Mar; 30(3):450-461. PubMed ID: 31705835 [TBL] [Abstract][Full Text] [Related]
15. The effects of three different rear knee angles on kinematics in the sprint start. Milanese C; Bertucco M; Zancanaro C Biol Sport; 2014 Aug; 31(3):209-15. PubMed ID: 25177099 [TBL] [Abstract][Full Text] [Related]
16. Joint kinetic determinants of starting block performance in athletic sprinting. Brazil A; Exell T; Wilson C; Willwacher S; Bezodis IN; Irwin G J Sports Sci; 2018 Jul; 36(14):1656-1662. PubMed ID: 29173043 [TBL] [Abstract][Full Text] [Related]
17. Relationships between anthropometric characteristics, block settings, and block clearance technique during the sprint start. Cavedon V; Bezodis NE; Sandri M; Pirlo M; Zancanaro C; Milanese C J Sports Sci; 2022 May; 40(10):1097-1109. PubMed ID: 35262456 [TBL] [Abstract][Full Text] [Related]
18. Are peak ground reaction forces related to better sprint acceleration performance? Nagahara R; Kanehisa H; Matsuo A; Fukunaga T Sports Biomech; 2021 Apr; 20(3):360-369. PubMed ID: 30676878 [TBL] [Abstract][Full Text] [Related]
19. Biomechanical Performance Factors in the Track and Field Sprint Start: A Systematic Review. Valamatos MJ; Abrantes JM; Carnide F; Valamatos MJ; Monteiro CP Int J Environ Res Public Health; 2022 Mar; 19(7):. PubMed ID: 35409757 [TBL] [Abstract][Full Text] [Related]
20. Acceleration capability in elite sprinters and ground impulse: Push more, brake less? Morin JB; Slawinski J; Dorel S; de Villareal ES; Couturier A; Samozino P; Brughelli M; Rabita G J Biomech; 2015 Sep; 48(12):3149-54. PubMed ID: 26209876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]