These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33344947)

  • 1. World-Class Male Sprinters and High Hurdlers Have Similar Start and Initial Acceleration Techniques.
    Bezodis IN; Brazil A; von Lieres Und Wilkau HC; Wood MA; Paradisis GP; Hanley B; Tucker CB; Pollitt L; Merlino S; Vazel PJ; Walker J; Bissas A
    Front Sports Act Living; 2019; 1():23. PubMed ID: 33344947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanics of World-Class Men and Women Hurdlers.
    Hanley B; Walker J; Paradisis GP; Merlino S; Bissas A
    Front Sports Act Living; 2021; 3():704308. PubMed ID: 34308350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sprint start kinematics during competition in elite and world-class male and female sprinters.
    Ciacci S; Merni F; Bartolomei S; Di Michele R
    J Sports Sci; 2017 Jul; 35(13):1270-1278. PubMed ID: 27540875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematic factors associated with start performance in World-class male sprinters.
    Walker J; Bissas A; Paradisis GP; Hanley B; Tucker CB; Jongerius N; Thomas A; von Lieres Und Wilkau HC; Brazil A; Wood MA; Merlino S; Vazel PJ; Bezodis IN
    J Biomech; 2021 Jul; 124():110554. PubMed ID: 34157480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal Comparisons Between Elite and High-Level 60 m Hurdlers.
    González-Frutos P; Veiga S; Mallo J; Navarro E
    Front Psychol; 2019; 10():2525. PubMed ID: 31803093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematic and kinetic comparisons of elite and well-trained sprinters during sprint start.
    Slawinski J; Bonnefoy A; Levêque JM; Ontanon G; Riquet A; Dumas R; Chèze L
    J Strength Cond Res; 2010 Apr; 24(4):896-905. PubMed ID: 19935105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematics of the typical beach flags start for young adult sprinters.
    Lockie RG; Vickery WM; Janse de Jonge XA
    J Sports Sci Med; 2012; 11(3):444-51. PubMed ID: 24149352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in the Force Velocity Mechanical Profile and the Effectiveness of Force Application During Sprint-Acceleration Between Sprinters and Hurdlers.
    Stavridis I; Smilios I; Tsopanidou A; Economou T; Paradisis G
    Front Sports Act Living; 2019; 1():26. PubMed ID: 33344950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of hurdling step strategy on the kinematics of the block start.
    Rowley LJ; Churchill SM; Dunn M; Wheat J
    Sports Biomech; 2024 Jul; 23(7):846-859. PubMed ID: 33821749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in step characteristics and linear kinematics between rugby players and sprinters during initial sprint acceleration.
    Wild JJ; Bezodis IN; North JS; Bezodis NE
    Eur J Sport Sci; 2018 Nov; 18(10):1327-1337. PubMed ID: 29996724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical Differences in the Sprint Start Between Faster and Slower High-Level Sprinters.
    Čoh M; Peharec S; Bačić P; Mackala K
    J Hum Kinet; 2017 Feb; 56():29-38. PubMed ID: 28469741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of different anthropometry-driven block settings on sprint start performance.
    Cavedon V; Bezodis NE; Sandri M; Golia S; Zancanaro C; Milanese C
    Eur J Sport Sci; 2023 Jul; 23(7):1110-1120. PubMed ID: 36453590
    [No Abstract]   [Full Text] [Related]  

  • 13. Kinematic and Temporal Differences Between World-Class Men's and Women's Hurdling Techniques.
    Bissas A; Paradisis GP; Hanley B; Merlino S; Walker J
    Front Sports Act Living; 2022; 4():873547. PubMed ID: 35571744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meso-pacing in Olympic and World Championship sprints and hurdles: Medallists save their best for the final.
    Hanley B; Hettinga FJ
    J Sports Sci; 2021 Nov; 39(22):2611-2617. PubMed ID: 34187332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gender-Related Differences in Mechanics of the Sprint Start and Sprint Acceleration of Top National-Level Sprinters.
    Mirkov DM; Knezevic OM; Garcia-Ramos A; Čoh M; Šarabon N
    Int J Environ Res Public Health; 2020 Sep; 17(18):. PubMed ID: 32899837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical Performance Factors in the Track and Field Sprint Start: A Systematic Review.
    Valamatos MJ; Abrantes JM; Carnide F; Valamatos MJ; Monteiro CP
    Int J Environ Res Public Health; 2022 Mar; 19(7):. PubMed ID: 35409757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Internal and External Oblique Muscle Asymmetry in Sprint Hurdlers and Sprinters: A Cross-Sectional Study.
    Adams L; Pace N; Heo A; Hunter I; Johnson AW; Mitchell UH
    J Sports Sci Med; 2022 Mar; 21(1):120-126. PubMed ID: 35250341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and kinematic synchronization between blind and guide sprinters.
    Nagahara R
    J Sports Sci; 2021 Jul; 39(14):1661-1668. PubMed ID: 33622181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biomechanical comparison of initial sprint acceleration performance and technique in an elite athlete with cerebral palsy and able-bodied sprinters.
    Bezodis IN; Cowburn J; Brazil A; Richardson R; Wilson C; Exell TA; Irwin G
    Sports Biomech; 2020 Apr; 19(2):189-200. PubMed ID: 29768121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships between lower-limb kinematics and block phase performance in a cross section of sprinters.
    Bezodis NE; Salo AI; Trewartha G
    Eur J Sport Sci; 2015; 15(2):118-24. PubMed ID: 24963548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.