These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 33345706)

  • 1. Imbalanced Subthreshold Currents Following Sepsis and Chemotherapy: A Shared Mechanism Offering a New Therapeutic Target?
    Rich MM; Housley SN; Nardelli P; Powers RK; Cope TC
    Neuroscientist; 2022 Apr; 28(2):103-120. PubMed ID: 33345706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced motor neuron excitability is an important contributor to weakness in a rat model of sepsis.
    Nardelli P; Vincent JA; Powers R; Cope TC; Rich MM
    Exp Neurol; 2016 Aug; 282():1-8. PubMed ID: 27118372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing motor neuron excitability to treat weakness in sepsis.
    Nardelli P; Powers R; Cope TC; Rich MM
    Ann Neurol; 2017 Dec; 82(6):961-971. PubMed ID: 29171917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced motoneuron excitability in a rat model of sepsis.
    Nardelli P; Khan J; Powers R; Cope TC; Rich MM
    J Neurophysiol; 2013 Apr; 109(7):1775-81. PubMed ID: 23303860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A molecular rheostat: Kv2.1 currents maintain or suppress repetitive firing in motoneurons.
    Romer SH; Deardorff AS; Fyffe REW
    J Physiol; 2019 Jul; 597(14):3769-3786. PubMed ID: 31145471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic defects in intraspinal mechanisms of spike encoding by spinal motoneurons following chemotherapy.
    Housley SN; Nardelli P; Powers RK; Rich MM; Cope TC
    Exp Neurol; 2020 Sep; 331():113354. PubMed ID: 32511953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased Resurgent Sodium Currents in Nav1.8 Contribute to Nociceptive Sensory Neuron Hyperexcitability Associated with Peripheral Neuropathies.
    Xiao Y; Barbosa C; Pei Z; Xie W; Strong JA; Zhang JM; Cummins TR
    J Neurosci; 2019 Feb; 39(8):1539-1550. PubMed ID: 30617209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subthreshold membrane resonance in neocortical neurons.
    Hutcheon B; Miura RM; Puil E
    J Neurophysiol; 1996 Aug; 76(2):683-97. PubMed ID: 8871191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of sodium channels underlies reversible neuropathy during critical illness in rats.
    Novak KR; Nardelli P; Cope TC; Filatov G; Glass JD; Khan J; Rich MM
    J Clin Invest; 2009 May; 119(5):1150-8. PubMed ID: 19425168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of ionic currents underlying changes in action potential waveforms in rat spinal motoneurons.
    Gao BX; Ziskind-Conhaim L
    J Neurophysiol; 1998 Dec; 80(6):3047-61. PubMed ID: 9862905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BK channel activation by L-type Ca
    Plante AE; Whitt JP; Meredith AL
    J Neurophysiol; 2021 Aug; 126(2):427-439. PubMed ID: 34191630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal Atrophy Early in Degenerative Ataxia Is a Compensatory Mechanism to Regulate Membrane Excitability.
    Dell'Orco JM; Wasserman AH; Chopra R; Ingram MA; Hu YS; Singh V; Wulff H; Opal P; Orr HT; Shakkottai VG
    J Neurosci; 2015 Aug; 35(32):11292-307. PubMed ID: 26269637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of persistent sodium and calcium currents in motoneuron firing and spasticity in chronic spinal rats.
    Li Y; Gorassini MA; Bennett DJ
    J Neurophysiol; 2004 Feb; 91(2):767-83. PubMed ID: 14762149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of membrane potential oscillations on the excitability of rat hypoglossal motoneurons.
    Zhang Q; Dai Y; Zhou J; Ge R; Hua Y; Powers RK; Binder MD
    Front Physiol; 2022; 13():955566. PubMed ID: 36082223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interplay of seven subthreshold conductances controls the resting membrane potential and the oscillatory behavior of thalamocortical neurons.
    Amarillo Y; Zagha E; Mato G; Rudy B; Nadal MS
    J Neurophysiol; 2014 Jul; 112(2):393-410. PubMed ID: 24760784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic mechanisms underlying excitation-to-frequency transduction: studies by voltage clamp methods.
    Crill WE; Schwindt P
    Arch Ital Biol; 1984 Mar; 122(1):31-41. PubMed ID: 6087761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A re-examination of the possibility of controlling the firing rate gain of neurons by balancing excitatory and inhibitory conductances.
    Capaday C
    Exp Brain Res; 2002 Mar; 143(1):67-77. PubMed ID: 11907692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Persistent sodium currents and repetitive firing in motoneurons of the sacrocaudal spinal cord of adult rats.
    Harvey PJ; Li Y; Li X; Bennett DJ
    J Neurophysiol; 2006 Sep; 96(3):1141-57. PubMed ID: 16282206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Threshold behaviour of human axons explored using subthreshold perturbations to membrane potential.
    Burke D; Howells J; Trevillion L; McNulty PA; Jankelowitz SK; Kiernan MC
    J Physiol; 2009 Jan; 587(2):491-504. PubMed ID: 19047204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Actions of norepinephrine on rat hypoglossal motoneurons.
    Parkis MA; Bayliss DA; Berger AJ
    J Neurophysiol; 1995 Nov; 74(5):1911-9. PubMed ID: 8592184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.