These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 33345951)

  • 1. Identifying and Characterizing a Chronic Cough Cohort Through Electronic Health Records.
    Weiner M; Dexter PR; Heithoff K; Roberts AR; Liu Z; Griffith A; Hui S; Schelfhout J; Dicpinigaitis P; Doshi I; Weaver JP
    Chest; 2021 Jun; 159(6):2346-2355. PubMed ID: 33345951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a natural language processing algorithm to detect chronic cough in electronic health records.
    Bali V; Weaver J; Turzhitsky V; Schelfhout J; Paudel ML; Hulbert E; Peterson-Brandt J; Currie AG; Bakka D
    BMC Pulm Med; 2022 Jun; 22(1):256. PubMed ID: 35764999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applying interpretable deep learning models to identify chronic cough patients using EHR data.
    Luo X; Gandhi P; Zhang Z; Shao W; Han Z; Chandrasekaran V; Turzhitsky V; Bali V; Roberts AR; Metzger M; Baker J; La Rosa C; Weaver J; Dexter P; Huang K
    Comput Methods Programs Biomed; 2021 Oct; 210():106395. PubMed ID: 34525412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prescriptions of opioid-containing drugs in patients with chronic cough.
    Weiner M; Liu Z; Schelfhout J; Dexter P; Roberts AR; Griffith A; Bali V; Weaver J
    Ther Adv Respir Dis; 2024; 18():17534666241259373. PubMed ID: 38877686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Augmented intelligence with natural language processing applied to electronic health records for identifying patients with non-alcoholic fatty liver disease at risk for disease progression.
    Van Vleck TT; Chan L; Coca SG; Craven CK; Do R; Ellis SB; Kannry JL; Loos RJF; Bonis PA; Cho J; Nadkarni GN
    Int J Med Inform; 2019 Sep; 129():334-341. PubMed ID: 31445275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges of Developing a Natural Language Processing Method With Electronic Health Records to Identify Persons With Chronic Mobility Disability.
    Agaronnik ND; Lindvall C; El-Jawahri A; He W; Iezzoni LI
    Arch Phys Med Rehabil; 2020 Oct; 101(10):1739-1746. PubMed ID: 32446905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using natural language processing to identify opioid use disorder in electronic health record data.
    Singleton J; Li C; Akpunonu PD; Abner EL; Kucharska-Newton AM
    Int J Med Inform; 2023 Feb; 170():104963. PubMed ID: 36521420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural Language Processing for Improved Characterization of COVID-19 Symptoms: Observational Study of 350,000 Patients in a Large Integrated Health Care System.
    Malden DE; Tartof SY; Ackerson BK; Hong V; Skarbinski J; Yau V; Qian L; Fischer H; Shaw SF; Caparosa S; Xie F
    JMIR Public Health Surveill; 2022 Dec; 8(12):e41529. PubMed ID: 36446133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using natural language processing to identify problem usage of prescription opioids.
    Carrell DS; Cronkite D; Palmer RE; Saunders K; Gross DE; Masters ET; Hylan TR; Von Korff M
    Int J Med Inform; 2015 Dec; 84(12):1057-64. PubMed ID: 26456569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Moving Biosurveillance Beyond Coded Data Using AI for Symptom Detection From Physician Notes: Retrospective Cohort Study.
    McMurry AJ; Zipursky AR; Geva A; Olson KL; Jones JR; Ignatov V; Miller TA; Mandl KD
    J Med Internet Res; 2024 Apr; 26():e53367. PubMed ID: 38573752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Value of Unstructured Electronic Health Record Data in Geriatric Syndrome Case Identification.
    Kharrazi H; Anzaldi LJ; Hernandez L; Davison A; Boyd CM; Leff B; Kimura J; Weiner JP
    J Am Geriatr Soc; 2018 Aug; 66(8):1499-1507. PubMed ID: 29972595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Getting More Out of Large Databases and EHRs with Natural Language Processing and Artificial Intelligence: The Future Is Here.
    Khosravi B; Rouzrokh P; Erickson BJ
    J Bone Joint Surg Am; 2022 Oct; 104(Suppl 3):51-55. PubMed ID: 36260045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Clinical Notes and Natural Language Processing for Automated HIV Risk Assessment.
    Feller DJ; Zucker J; Yin MT; Gordon P; Elhadad N
    J Acquir Immune Defic Syndr; 2018 Feb; 77(2):160-166. PubMed ID: 29084046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining Multiple Sclerosis Phenotype from Electronic Medical Records.
    Nelson RE; Butler J; LaFleur J; Knippenberg K; C Kamauu AW; DuVall SL
    J Manag Care Spec Pharm; 2016 Dec; 22(12):1377-1382. PubMed ID: 27882837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The prevalence of problem opioid use in patients receiving chronic opioid therapy: computer-assisted review of electronic health record clinical notes.
    Palmer RE; Carrell DS; Cronkite D; Saunders K; Gross DE; Masters E; Donevan S; Hylan TR; Von Kroff M
    Pain; 2015 Jul; 156(7):1208-1214. PubMed ID: 25760471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural Language Processing Improves Detection of Nonsevere Hypoglycemia in Medical Records Versus Coding Alone in Patients With Type 2 Diabetes but Does Not Improve Prediction of Severe Hypoglycemia Events: An Analysis Using the Electronic Medical Record in a Large Health System.
    Misra-Hebert AD; Milinovich A; Zajichek A; Ji X; Hobbs TD; Weng W; Petraro P; Kong SX; Mocarski M; Ganguly R; Bauman JM; Pantalone KM; Zimmerman RS; Kattan MW
    Diabetes Care; 2020 Aug; 43(8):1937-1940. PubMed ID: 32414887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural Language Processing of Clinical Notes on Chronic Diseases: Systematic Review.
    Sheikhalishahi S; Miotto R; Dudley JT; Lavelli A; Rinaldi F; Osmani V
    JMIR Med Inform; 2019 Apr; 7(2):e12239. PubMed ID: 31066697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing and testing a framework for coding general practitioners' free-text diagnoses in electronic medical records - a reliability study for generating training data in natural language processing.
    Wallnöfer A; Burgstaller JM; Weiss K; Rosemann T; Senn O; Markun S
    BMC Prim Care; 2024 Jul; 25(1):257. PubMed ID: 39014311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and Evaluation of a Natural Language Processing Annotation Tool to Facilitate Phenotyping of Cognitive Status in Electronic Health Records: Diagnostic Study.
    Noori A; Magdamo C; Liu X; Tyagi T; Li Z; Kondepudi A; Alabsi H; Rudmann E; Wilcox D; Brenner L; Robbins GK; Moura L; Zafar S; Benson NM; Hsu J; R Dickson J; Serrano-Pozo A; Hyman BT; Blacker D; Westover MB; Mukerji SS; Das S
    J Med Internet Res; 2022 Aug; 24(8):e40384. PubMed ID: 36040790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural language processing of electronic health records is superior to billing codes to identify symptom burden in hemodialysis patients.
    Chan L; Beers K; Yau AA; Chauhan K; Duffy Á; Chaudhary K; Debnath N; Saha A; Pattharanitima P; Cho J; Kotanko P; Federman A; Coca SG; Van Vleck T; Nadkarni GN
    Kidney Int; 2020 Feb; 97(2):383-392. PubMed ID: 31883805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.