These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33345951)

  • 21. Optimizing research in symptomatic uterine fibroids with development of a computable phenotype for use with electronic health records.
    Hoffman SR; Vines AI; Halladay JR; Pfaff E; Schiff L; Westreich D; Sundaresan A; Johnson LS; Nicholson WK
    Am J Obstet Gynecol; 2018 Jun; 218(6):610.e1-610.e7. PubMed ID: 29432754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Natural Language Processing of Clinical Notes to Identify Mental Illness and Substance Use Among People Living with HIV: Retrospective Cohort Study.
    Ridgway JP; Uvin A; Schmitt J; Oliwa T; Almirol E; Devlin S; Schneider J
    JMIR Med Inform; 2021 Mar; 9(3):e23456. PubMed ID: 33688848
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automatically identifying opioid use disorder in non-cancer patients on chronic opioid therapy.
    Zhu VJ; Lenert LA; Barth KS; Simpson KN; Li H; Kopscik M; Brady KT
    Health Informatics J; 2022; 28(2):14604582221107808. PubMed ID: 35726687
    [No Abstract]   [Full Text] [Related]  

  • 24. Retrospective study of propionic acidemia using natural language processing in Mayo Clinic electronic health record data.
    Barman H; Sikirica V; Carlson K; Silvert E; Carlson KB; Boyer S; Glaser R; Morava E; Wagner T; Lanpher B
    Mol Genet Metab; 2023 Nov; 140(3):107695. PubMed ID: 37708666
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Screening pregnant women for suicidal behavior in electronic medical records: diagnostic codes vs. clinical notes processed by natural language processing.
    Zhong QY; Karlson EW; Gelaye B; Finan S; Avillach P; Smoller JW; Cai T; Williams MA
    BMC Med Inform Decis Mak; 2018 May; 18(1):30. PubMed ID: 29843698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Incorporating natural language processing to improve classification of axial spondyloarthritis using electronic health records.
    Zhao SS; Hong C; Cai T; Xu C; Huang J; Ermann J; Goodson NJ; Solomon DH; Cai T; Liao KP
    Rheumatology (Oxford); 2020 May; 59(5):1059-1065. PubMed ID: 31535693
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Food and Drug Administration Biologics Effectiveness and Safety Initiative Facilitates Detection of Vaccine Administrations From Unstructured Data in Medical Records Through Natural Language Processing.
    Deady M; Ezzeldin H; Cook K; Billings D; Pizarro J; Plotogea AA; Saunders-Hastings P; Belov A; Whitaker BI; Anderson SA
    Front Digit Health; 2021; 3():777905. PubMed ID: 35005697
    [No Abstract]   [Full Text] [Related]  

  • 28. Automatic identification of heart failure diagnostic criteria, using text analysis of clinical notes from electronic health records.
    Byrd RJ; Steinhubl SR; Sun J; Ebadollahi S; Stewart WF
    Int J Med Inform; 2014 Dec; 83(12):983-92. PubMed ID: 23317809
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automated detection of substance use information from electronic health records for a pediatric population.
    Ni Y; Bachtel A; Nause K; Beal S
    J Am Med Inform Assoc; 2021 Sep; 28(10):2116-2127. PubMed ID: 34333636
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chronic Cough: Characterizing and Quantifying Burden in Adults Using a Nationwide Electronic Health Records Database.
    Scierka LE; Bradley BA; Glynn E; Davis S; Hoffman M; Tam-Williams JB; Mena-Hurtado C; Smolderen KG
    J Healthc Inform Res; 2024 Mar; 8(1):50-64. PubMed ID: 38273985
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Longitudinal analysis of pain in patients with metastatic prostate cancer using natural language processing of medical record text.
    Heintzelman NH; Taylor RJ; Simonsen L; Lustig R; Anderko D; Haythornthwaite JA; Childs LC; Bova GS
    J Am Med Inform Assoc; 2013; 20(5):898-905. PubMed ID: 23144336
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of recurrent atrial fibrillation using natural language processing applied to electronic health records.
    Zheng C; Lee MS; Bansal N; Go AS; Chen C; Harrison TN; Fan D; Allen A; Garcia E; Lidgard B; Singer D; An J
    Eur Heart J Qual Care Clin Outcomes; 2024 Jan; 10(1):77-88. PubMed ID: 36997334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A method for cohort selection of cardiovascular disease records from an electronic health record system.
    Abrahão MTF; Nobre MRC; Gutierrez MA
    Int J Med Inform; 2017 Jun; 102():138-149. PubMed ID: 28495342
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Underserved populations with missing race ethnicity data differ significantly from those with structured race/ethnicity documentation.
    Sholle ET; Pinheiro LC; Adekkanattu P; Davila MA; Johnson SB; Pathak J; Sinha S; Li C; Lubansky SA; Safford MM; Campion TR
    J Am Med Inform Assoc; 2019 Aug; 26(8-9):722-729. PubMed ID: 31329882
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Methodological Approach to Validate Pneumonia Encounters from Radiology Reports Using Natural Language Processing.
    Panny A; Hegde H; Glurich I; Scannapieco FA; Vedre JG; VanWormer JJ; Miecznikowski J; Acharya A
    Methods Inf Med; 2022 May; 61(1-02):38-45. PubMed ID: 35381617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine learning and natural language processing (NLP) approach to predict early progression to first-line treatment in real-world hormone receptor-positive (HR+)/HER2-negative advanced breast cancer patients.
    Ribelles N; Jerez JM; Rodriguez-Brazzarola P; Jimenez B; Diaz-Redondo T; Mesa H; Marquez A; Sanchez-Muñoz A; Pajares B; Carabantes F; Bermejo MJ; Villar E; Dominguez-Recio ME; Saez E; Galvez L; Godoy A; Franco L; Ruiz-Medina S; Lopez I; Alba E
    Eur J Cancer; 2021 Feb; 144():224-231. PubMed ID: 33373867
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Risk prediction using natural language processing of electronic mental health records in an inpatient forensic psychiatry setting.
    Le DV; Montgomery J; Kirkby KC; Scanlan J
    J Biomed Inform; 2018 Oct; 86():49-58. PubMed ID: 30118855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using Natural Language Processing to Identify Different Lens Pathology in Electronic Health Records.
    Stein JD; Zhou Y; Andrews CA; Kim JE; Addis V; Bixler J; Grove N; McMillan B; Munir SZ; Pershing S; Schultz JS; Stagg BC; Wang SY; Woreta F;
    Am J Ophthalmol; 2024 Jun; 262():153-160. PubMed ID: 38296152
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Natural language processing improves identification of colorectal cancer testing in the electronic medical record.
    Denny JC; Choma NN; Peterson JF; Miller RA; Bastarache L; Li M; Peterson NB
    Med Decis Making; 2012; 32(1):188-97. PubMed ID: 21393557
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and Validation of a Natural Language Processing Tool to Identify Patients Treated for Pneumonia across VA Emergency Departments.
    Jones BE; South BR; Shao Y; Lu CC; Leng J; Sauer BC; Gundlapalli AV; Samore MH; Zeng Q
    Appl Clin Inform; 2018 Jan; 9(1):122-128. PubMed ID: 29466818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.