BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 33345951)

  • 21. Optimizing research in symptomatic uterine fibroids with development of a computable phenotype for use with electronic health records.
    Hoffman SR; Vines AI; Halladay JR; Pfaff E; Schiff L; Westreich D; Sundaresan A; Johnson LS; Nicholson WK
    Am J Obstet Gynecol; 2018 Jun; 218(6):610.e1-610.e7. PubMed ID: 29432754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automatically identifying opioid use disorder in non-cancer patients on chronic opioid therapy.
    Zhu VJ; Lenert LA; Barth KS; Simpson KN; Li H; Kopscik M; Brady KT
    Health Informatics J; 2022; 28(2):14604582221107808. PubMed ID: 35726687
    [No Abstract]   [Full Text] [Related]  

  • 23. Natural Language Processing of Clinical Notes to Identify Mental Illness and Substance Use Among People Living with HIV: Retrospective Cohort Study.
    Ridgway JP; Uvin A; Schmitt J; Oliwa T; Almirol E; Devlin S; Schneider J
    JMIR Med Inform; 2021 Mar; 9(3):e23456. PubMed ID: 33688848
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identifying Information Gaps in Electronic Health Records by Using Natural Language Processing: Gynecologic Surgery History Identification.
    Moon S; Carlson LA; Moser ED; Agnikula Kshatriya BS; Smith CY; Rocca WA; Gazzuola Rocca L; Bielinski SJ; Liu H; Larson NB
    J Med Internet Res; 2022 Jan; 24(1):e29015. PubMed ID: 35089141
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Retrospective study of propionic acidemia using natural language processing in Mayo Clinic electronic health record data.
    Barman H; Sikirica V; Carlson K; Silvert E; Carlson KB; Boyer S; Glaser R; Morava E; Wagner T; Lanpher B
    Mol Genet Metab; 2023 Nov; 140(3):107695. PubMed ID: 37708666
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Screening pregnant women for suicidal behavior in electronic medical records: diagnostic codes vs. clinical notes processed by natural language processing.
    Zhong QY; Karlson EW; Gelaye B; Finan S; Avillach P; Smoller JW; Cai T; Williams MA
    BMC Med Inform Decis Mak; 2018 May; 18(1):30. PubMed ID: 29843698
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Incorporating natural language processing to improve classification of axial spondyloarthritis using electronic health records.
    Zhao SS; Hong C; Cai T; Xu C; Huang J; Ermann J; Goodson NJ; Solomon DH; Cai T; Liao KP
    Rheumatology (Oxford); 2020 May; 59(5):1059-1065. PubMed ID: 31535693
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Food and Drug Administration Biologics Effectiveness and Safety Initiative Facilitates Detection of Vaccine Administrations From Unstructured Data in Medical Records Through Natural Language Processing.
    Deady M; Ezzeldin H; Cook K; Billings D; Pizarro J; Plotogea AA; Saunders-Hastings P; Belov A; Whitaker BI; Anderson SA
    Front Digit Health; 2021; 3():777905. PubMed ID: 35005697
    [No Abstract]   [Full Text] [Related]  

  • 29. Automatic identification of heart failure diagnostic criteria, using text analysis of clinical notes from electronic health records.
    Byrd RJ; Steinhubl SR; Sun J; Ebadollahi S; Stewart WF
    Int J Med Inform; 2014 Dec; 83(12):983-92. PubMed ID: 23317809
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automated detection of substance use information from electronic health records for a pediatric population.
    Ni Y; Bachtel A; Nause K; Beal S
    J Am Med Inform Assoc; 2021 Sep; 28(10):2116-2127. PubMed ID: 34333636
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chronic Cough: Characterizing and Quantifying Burden in Adults Using a Nationwide Electronic Health Records Database.
    Scierka LE; Bradley BA; Glynn E; Davis S; Hoffman M; Tam-Williams JB; Mena-Hurtado C; Smolderen KG
    J Healthc Inform Res; 2024 Mar; 8(1):50-64. PubMed ID: 38273985
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Longitudinal analysis of pain in patients with metastatic prostate cancer using natural language processing of medical record text.
    Heintzelman NH; Taylor RJ; Simonsen L; Lustig R; Anderko D; Haythornthwaite JA; Childs LC; Bova GS
    J Am Med Inform Assoc; 2013; 20(5):898-905. PubMed ID: 23144336
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of recurrent atrial fibrillation using natural language processing applied to electronic health records.
    Zheng C; Lee MS; Bansal N; Go AS; Chen C; Harrison TN; Fan D; Allen A; Garcia E; Lidgard B; Singer D; An J
    Eur Heart J Qual Care Clin Outcomes; 2024 Jan; 10(1):77-88. PubMed ID: 36997334
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A method for cohort selection of cardiovascular disease records from an electronic health record system.
    Abrahão MTF; Nobre MRC; Gutierrez MA
    Int J Med Inform; 2017 Jun; 102():138-149. PubMed ID: 28495342
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Underserved populations with missing race ethnicity data differ significantly from those with structured race/ethnicity documentation.
    Sholle ET; Pinheiro LC; Adekkanattu P; Davila MA; Johnson SB; Pathak J; Sinha S; Li C; Lubansky SA; Safford MM; Campion TR
    J Am Med Inform Assoc; 2019 Aug; 26(8-9):722-729. PubMed ID: 31329882
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Methodological Approach to Validate Pneumonia Encounters from Radiology Reports Using Natural Language Processing.
    Panny A; Hegde H; Glurich I; Scannapieco FA; Vedre JG; VanWormer JJ; Miecznikowski J; Acharya A
    Methods Inf Med; 2022 May; 61(1-02):38-45. PubMed ID: 35381617
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Machine learning and natural language processing (NLP) approach to predict early progression to first-line treatment in real-world hormone receptor-positive (HR+)/HER2-negative advanced breast cancer patients.
    Ribelles N; Jerez JM; Rodriguez-Brazzarola P; Jimenez B; Diaz-Redondo T; Mesa H; Marquez A; Sanchez-Muñoz A; Pajares B; Carabantes F; Bermejo MJ; Villar E; Dominguez-Recio ME; Saez E; Galvez L; Godoy A; Franco L; Ruiz-Medina S; Lopez I; Alba E
    Eur J Cancer; 2021 Feb; 144():224-231. PubMed ID: 33373867
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Risk prediction using natural language processing of electronic mental health records in an inpatient forensic psychiatry setting.
    Le DV; Montgomery J; Kirkby KC; Scanlan J
    J Biomed Inform; 2018 Oct; 86():49-58. PubMed ID: 30118855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using Natural Language Processing to Identify Different Lens Pathology in Electronic Health Records.
    Stein JD; Zhou Y; Andrews CA; Kim JE; Addis V; Bixler J; Grove N; McMillan B; Munir SZ; Pershing S; Schultz JS; Stagg BC; Wang SY; Woreta F;
    Am J Ophthalmol; 2024 Jun; 262():153-160. PubMed ID: 38296152
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Natural language processing improves identification of colorectal cancer testing in the electronic medical record.
    Denny JC; Choma NN; Peterson JF; Miller RA; Bastarache L; Li M; Peterson NB
    Med Decis Making; 2012; 32(1):188-97. PubMed ID: 21393557
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.