These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33346021)

  • 1. Novel type of coagulation equation and its application to DNA repeat expansion process.
    Itsko M; Abu YB
    J Theor Biol; 2021 Feb; 511():110555. PubMed ID: 33346021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of repeat propagation in the microgene polymerization reaction.
    Itsko M; Rabinovitch A; Zaritsky A
    Biophys J; 2009 Mar; 96(5):1866-74. PubMed ID: 19254545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics of unstable DNA structures from the kinetics of the microgene PCR.
    Itsko M; Zaritsky A; Rabinovitch A
    J Phys Chem B; 2008 Oct; 112(41):13149-56. PubMed ID: 18795769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initiation of the microgene polymerization reaction with non-repetitive homo-duplexes.
    Itsko M; Zaritsky A; Rabinovitch A; Ben-Dov E
    Biochem Biophys Res Commun; 2008 Apr; 368(3):606-13. PubMed ID: 18243133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creation of libraries with long ORFs by polymerization of a microgene.
    Shiba K; Takahashi Y; Noda T
    Proc Natl Acad Sci U S A; 1997 Apr; 94(8):3805-10. PubMed ID: 9108059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA ligase I competes with FEN1 to expand repetitive DNA sequences in vitro.
    Henricksen LA; Veeraraghavan J; Chafin DR; Bambara RA
    J Biol Chem; 2002 Jun; 277(25):22361-9. PubMed ID: 11948189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and expansion of repetitive DNA sequences.
    Williams SL; Coster G
    Methods Cell Biol; 2024; 182():167-185. PubMed ID: 38359975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights into the genetic instability in CCTG repeats.
    Guo P; Lam SL
    FEBS Lett; 2015 Oct; 589(20 Pt B):3058-63. PubMed ID: 26384951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ detection of tandem DNA repeat length.
    Yaar R; Szafranski P; Cantor CR; Smith CL
    Genet Anal; 1996 Nov; 13(5):113-8. PubMed ID: 9021399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of sequence on repeat expansion during DNA replication.
    Heidenfelder BL; Topal MD
    Nucleic Acids Res; 2003 Dec; 31(24):7159-64. PubMed ID: 14654691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of in vitro expansion of long DNA repeats: effect of temperature, repeat length, repeat sequence, and DNA polymerases.
    Tuntiwechapikul W; Salazar M
    Biochemistry; 2002 Jan; 41(3):854-60. PubMed ID: 11790107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic amplification of synthetic oligodeoxyribonucleotides: implications for triplet repeat expansions in the human genome.
    Behn-Krappa A; Doerfler W
    Hum Mutat; 1994; 3(1):19-24. PubMed ID: 8118462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replication Through Repetitive DNA Elements and Their Role in Human Diseases.
    Madireddy A; Gerhardt J
    Adv Exp Med Biol; 2017; 1042():549-581. PubMed ID: 29357073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extensive direct-tandem organization of a long repeat DNA sequence on the Y chromosome of chinook salmon (Oncorhynchus tshawytscha).
    Devlin RH; Stone GW; Smailus DE
    J Mol Evol; 1998 Mar; 46(3):277-87. PubMed ID: 9493353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of internal direct and inverted Alu repeat sequences on PCR.
    Ji W; Zhang XY; Warshamana GS; Qu GZ; Ehrlich M
    PCR Methods Appl; 1994 Oct; 4(2):109-16. PubMed ID: 7580882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverted repeated sequences in yeast nuclear DNA.
    Klein HL; Welch SK
    Nucleic Acids Res; 1980 Oct; 8(20):4651-69. PubMed ID: 7003542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of human simple repeat loci by hybridization selection.
    Armour JA; Neumann R; Gobert S; Jeffreys AJ
    Hum Mol Genet; 1994 Apr; 3(4):599-65. PubMed ID: 8069306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expansion during PCR of short single-stranded DNA fragments carrying nonselfcomplementary dinucleotide or trinucleotide repeats.
    Reichová N; Kypr J
    Mol Biol Rep; 2003 Sep; 30(3):155-63. PubMed ID: 12974470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of (cac)n/(gtg)n simple repetitive sequences in mRNA of human lymphocytes.
    Epplen C; Epplen JT
    Hum Genet; 1994 Jan; 93(1):35-41. PubMed ID: 7505766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unequal excision of complementary strands is involved in the generation of palindromic repetitions of rho- mitochondrial DNA in yeast.
    Sor F; Fukuhara H
    Cell; 1983 Feb; 32(2):391-6. PubMed ID: 6297793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.