These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 33346062)

  • 21. Reap the crop wild relatives for breeding future crops.
    Bohra A; Kilian B; Sivasankar S; Caccamo M; Mba C; McCouch SR; Varshney RK
    Trends Biotechnol; 2022 Apr; 40(4):412-431. PubMed ID: 34629170
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potential Uses of Wild Germplasms of Grain Legumes for Crop Improvement.
    Muñoz N; Liu A; Kan L; Li MW; Lam HM
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28165413
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A domestication history of dynamic adaptation and genomic deterioration in Sorghum.
    Smith O; Nicholson WV; Kistler L; Mace E; Clapham A; Rose P; Stevens C; Ware R; Samavedam S; Barker G; Jordan D; Fuller DQ; Allaby RG
    Nat Plants; 2019 Apr; 5(4):369-379. PubMed ID: 30962527
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Progress, challenges and the future of crop genomes.
    Michael TP; VanBuren R
    Curr Opin Plant Biol; 2015 Apr; 24():71-81. PubMed ID: 25703261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. From zero to hero: the past, present and future of grain amaranth breeding.
    Joshi DC; Sood S; Hosahatti R; Kant L; Pattanayak A; Kumar A; Yadav D; Stetter MG
    Theor Appl Genet; 2018 Sep; 131(9):1807-1823. PubMed ID: 29992369
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Revisiting the versatile buckwheat: reinvigorating genetic gains through integrated breeding and genomics approach.
    Joshi DC; Chaudhari GV; Sood S; Kant L; Pattanayak A; Zhang K; Fan Y; Janovská D; Meglič V; Zhou M
    Planta; 2019 Sep; 250(3):783-801. PubMed ID: 30623242
    [TBL] [Abstract][Full Text] [Related]  

  • 27. De-Domestication: An Extension of Crop Evolution.
    Wu D; Lao S; Fan L
    Trends Plant Sci; 2021 Jun; 26(6):560-574. PubMed ID: 33648850
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chromosome-level genome assembly and population genomic resource to accelerate orphan crop lablab breeding.
    Njaci I; Waweru B; Kamal N; Muktar MS; Fisher D; Gundlach H; Muli C; Muthui L; Maranga M; Kiambi D; Maass BL; Emmrich PMF; Domelevo Entfellner JB; Spannagl M; Chapman MA; Shorinola O; Jones CS
    Nat Commun; 2023 Apr; 14(1):1915. PubMed ID: 37069152
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reproductive traits and evolutionary divergence between Mediterranean crops and their wild relatives.
    Iriondo JM; Milla R; Volis S; Rubio de Casas R
    Plant Biol (Stuttg); 2018 Jan; 20 Suppl 1():78-88. PubMed ID: 28976618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The integrated genomics of crop domestication and breeding.
    Huang X; Huang S; Han B; Li J
    Cell; 2022 Jul; 185(15):2828-2839. PubMed ID: 35643084
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring Pan-Genomes: An Overview of Resources and Tools for Unraveling Structure, Function, and Evolution of Crop Genes and Genomes.
    Naithani S; Deng CH; Sahu SK; Jaiswal P
    Biomolecules; 2023 Sep; 13(9):. PubMed ID: 37759803
    [TBL] [Abstract][Full Text] [Related]  

  • 32. De novo domestication: retrace the history of agriculture to design future crops.
    Zhang J; Yu H; Li J
    Curr Opin Biotechnol; 2023 Jun; 81():102946. PubMed ID: 37080109
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Orphan legume crops enter the genomics era!
    Varshney RK; Close TJ; Singh NK; Hoisington DA; Cook DR
    Curr Opin Plant Biol; 2009 Apr; 12(2):202-10. PubMed ID: 19157958
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genomic innovation for crop improvement.
    Bevan MW; Uauy C; Wulff BB; Zhou J; Krasileva K; Clark MD
    Nature; 2017 Mar; 543(7645):346-354. PubMed ID: 28300107
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Patterns of genomic changes with crop domestication and breeding.
    Shi J; Lai J
    Curr Opin Plant Biol; 2015 Apr; 24():47-53. PubMed ID: 25656221
    [TBL] [Abstract][Full Text] [Related]  

  • 36. QTLian breeding for climate resilience in cereals: progress and prospects.
    Choudhary M; Wani SH; Kumar P; Bagaria PK; Rakshit S; Roorkiwal M; Varshney RK
    Funct Integr Genomics; 2019 Sep; 19(5):685-701. PubMed ID: 31093800
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Blurring the boundaries between cereal crops and model plants.
    Borrill P
    New Phytol; 2020 Dec; 228(6):1721-1727. PubMed ID: 31571228
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    Jian LM; Xiao YJ; Yan JB
    Yi Chuan; 2023 Sep; 45(9):741-753. PubMed ID: 37731229
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accelerated Domestication of New Crops: Yield is Key.
    Luo G; Najafi J; Correia PMP; Trinh MDL; Chapman EA; Østerberg JT; Thomsen HC; Pedas PR; Larson S; Gao C; Poland J; Knudsen S; DeHaan L; Palmgren M
    Plant Cell Physiol; 2022 Nov; 63(11):1624-1640. PubMed ID: 35583202
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The draft genomes of five agriculturally important African orphan crops.
    Chang Y; Liu H; Liu M; Liao X; Sahu SK; Fu Y; Song B; Cheng S; Kariba R; Muthemba S; Hendre PS; Mayes S; Ho WK; Yssel AEJ; Kendabie P; Wang S; Li L; Muchugi A; Jamnadass R; Lu H; Peng S; Van Deynze A; Simons A; Yana-Shapiro H; Van de Peer Y; Xu X; Yang H; Wang J; Liu X
    Gigascience; 2019 Mar; 8(3):. PubMed ID: 30535374
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.