These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 33346401)
21. Efficacy of three-dimensionally printed polycaprolactone/beta tricalcium phosphate scaffold on mandibular reconstruction. Lee S; Choi D; Shim JH; Nam W Sci Rep; 2020 Mar; 10(1):4979. PubMed ID: 32188900 [TBL] [Abstract][Full Text] [Related]
22. Polycaprolactone-coated 3D printed tricalcium phosphate scaffolds for bone tissue engineering: in vitro alendronate release behavior and local delivery effect on in vivo osteogenesis. Tarafder S; Bose S ACS Appl Mater Interfaces; 2014 Jul; 6(13):9955-65. PubMed ID: 24826838 [TBL] [Abstract][Full Text] [Related]
23. Triple PLGA/PCL Scaffold Modification Including Silver Impregnation, Collagen Coating, and Electrospinning Significantly Improve Biocompatibility, Antimicrobial, and Osteogenic Properties for Orofacial Tissue Regeneration. Qian Y; Zhou X; Zhang F; Diekwisch TGH; Luan X; Yang J ACS Appl Mater Interfaces; 2019 Oct; 11(41):37381-37396. PubMed ID: 31517483 [TBL] [Abstract][Full Text] [Related]
24. Three-dimensionally printed polycaprolactone and β-tricalcium phosphate scaffolds for bone tissue engineering: an in vitro study. Sharaf B; Faris CB; Abukawa H; Susarla SM; Vacanti JP; Kaban LB; Troulis MJ J Oral Maxillofac Surg; 2012 Mar; 70(3):647-56. PubMed ID: 22079064 [TBL] [Abstract][Full Text] [Related]
25. 3D printed polycaprolactone/beta-tricalcium phosphate/magnesium peroxide oxygen releasing scaffold enhances osteogenesis and implanted BMSCs survival in repairing the large bone defect. Peng Z; Wang C; Liu C; Xu H; Wang Y; Liu Y; Hu Y; Li J; Jin Y; Jiang C; Liu L; Guo J; Zhu L J Mater Chem B; 2021 Jul; 9(28):5698-5710. PubMed ID: 34223587 [TBL] [Abstract][Full Text] [Related]
26. Three-dimensional hierarchical composite scaffolds consisting of polycaprolactone, β-tricalcium phosphate, and collagen nanofibers: fabrication, physical properties, and in vitro cell activity for bone tissue regeneration. Yeo M; Lee H; Kim G Biomacromolecules; 2011 Feb; 12(2):502-10. PubMed ID: 21189025 [TBL] [Abstract][Full Text] [Related]
27. A polycaprolactone-β-tricalcium phosphate-heparan sulphate device for cranioplasty. Le BQ; Rai B; Hui Lim ZX; Tan TC; Lin T; Lin Lee JJ; Murali S; Teoh SH; Nurcombe V; Cool SM J Craniomaxillofac Surg; 2019 Feb; 47(2):341-348. PubMed ID: 30579746 [TBL] [Abstract][Full Text] [Related]
28. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix. Nyberg E; Rindone A; Dorafshar A; Grayson WL Tissue Eng Part A; 2017 Jun; 23(11-12):503-514. PubMed ID: 28027692 [TBL] [Abstract][Full Text] [Related]
29. Highly porous polycaprolactone scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for bone regeneration. Gandolfi MG; Zamparini F; Degli Esposti M; Chiellini F; Fava F; Fabbri P; Taddei P; Prati C Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():341-361. PubMed ID: 31147007 [TBL] [Abstract][Full Text] [Related]
30. Mesenchymal stem cells and platelet-rich plasma-impregnated polycaprolactone-β tricalcium phosphate bio-scaffold enhanced bone regeneration around dental implants. Almansoori AA; Kwon OJ; Nam JH; Seo YK; Song HR; Lee JH Int J Implant Dent; 2021 May; 7(1):35. PubMed ID: 33948811 [TBL] [Abstract][Full Text] [Related]
31. Nanoscale β-TCP-Laden GelMA/PCL Composite Membrane for Guided Bone Regeneration. Mahmoud AH; Han Y; Dal-Fabbro R; Daghrery A; Xu J; Kaigler D; Bhaduri SB; Malda J; Bottino MC ACS Appl Mater Interfaces; 2023 Jul; 15(27):32121-32135. PubMed ID: 37364054 [TBL] [Abstract][Full Text] [Related]
32. Biocompatibility and biodegradation studies of PCL/β-TCP bone tissue scaffold fabricated by structural porogen method. Lu L; Zhang Q; Wootton D; Chiou R; Li D; Lu B; Lelkes P; Zhou J J Mater Sci Mater Med; 2012 Sep; 23(9):2217-26. PubMed ID: 22669285 [TBL] [Abstract][Full Text] [Related]
33. Enhanced bone regeneration composite scaffolds of PLLA/β-TCP matrix grafted with gelatin and HAp. Wang JL; Chen Q; Du BB; Cao L; Lin H; Fan ZY; Dong J Mater Sci Eng C Mater Biol Appl; 2018 Jun; 87():60-69. PubMed ID: 29549950 [TBL] [Abstract][Full Text] [Related]
34. Effects of scaffold architecture on cranial bone healing. Berner A; Woodruff MA; Lam CX; Arafat MT; Saifzadeh S; Steck R; Ren J; Nerlich M; Ekaputra AK; Gibson I; Hutmacher DW Int J Oral Maxillofac Surg; 2014 Apr; 43(4):506-13. PubMed ID: 24183512 [TBL] [Abstract][Full Text] [Related]
35. Repairing a critical-sized bone defect with highly porous modified and unmodified baghdadite scaffolds. Roohani-Esfahani SI; Dunstan CR; Davies B; Pearce S; Williams R; Zreiqat H Acta Biomater; 2012 Nov; 8(11):4162-72. PubMed ID: 22842031 [TBL] [Abstract][Full Text] [Related]
36. Functionalization of polycaprolactone scaffolds with hyaluronic acid and β-TCP facilitates migration and osteogenic differentiation of human dental pulp stem cells in vitro. Jensen J; Kraft DC; Lysdahl H; Foldager CB; Chen M; Kristiansen AA; Rölfing JH; Bünger CE Tissue Eng Part A; 2015 Feb; 21(3-4):729-39. PubMed ID: 25252795 [TBL] [Abstract][Full Text] [Related]
37. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521 [TBL] [Abstract][Full Text] [Related]
38. Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds. Dadsetan M; Guda T; Runge MB; Mijares D; LeGeros RZ; LeGeros JP; Silliman DT; Lu L; Wenke JC; Brown Baer PR; Yaszemski MJ Acta Biomater; 2015 May; 18():9-20. PubMed ID: 25575855 [TBL] [Abstract][Full Text] [Related]
39. Surface modification of PCL-TCP scaffolds improve interfacial mechanical interlock and enhance early bone formation: an in vitro and in vivo characterization. Yeo A; Wong WJ; Khoo HH; Teoh SH J Biomed Mater Res A; 2010 Jan; 92(1):311-21. PubMed ID: 19189386 [TBL] [Abstract][Full Text] [Related]
40. A comparative study of the proliferation and osteogenic differentiation of human periodontal ligament cells cultured on β-TCP ceramics and demineralized bone matrix with or without osteogenic inducers in vitro. An S; Gao Y; Huang X; Ling J; Liu Z; Xiao Y Int J Mol Med; 2015 May; 35(5):1341-6. PubMed ID: 25738431 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]