These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

559 related articles for article (PubMed ID: 33346713)

  • 1. CRISPR-Cas "Non-Target" Sites Inhibit On-Target Cutting Rates.
    Moreb EA; Hutmacher M; Lynch MD
    CRISPR J; 2020 Dec; 3(6):550-561. PubMed ID: 33346713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of genome editing through CRISPR-Cas9 engineering.
    Zhang JH; Adikaram P; Pandey M; Genis A; Simonds WF
    Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.
    Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S
    Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanding the Genome-Editing Toolbox with
    Nakamura A; Yamamoto H; Yano T; Hasegawa R; Makino Y; Mitsuda N; Terakawa T; Ito S; Sugano SS
    CRISPR J; 2024 Aug; 7(4):197-209. PubMed ID: 39111827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A detailed cell-free transcription-translation-based assay to decipher CRISPR protospacer-adjacent motifs.
    Maxwell CS; Jacobsen T; Marshall R; Noireaux V; Beisel CL
    Methods; 2018 Jul; 143():48-57. PubMed ID: 29486239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene Manipulation Using Fusion Guide RNAs for Cas9 and Cas12a.
    Shin HR; Kweon J; Kim Y
    Methods Mol Biol; 2021; 2162():185-193. PubMed ID: 32926383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods for decoding Cas9 protospacer adjacent motif (PAM) sequences: A brief overview.
    Karvelis T; Gasiunas G; Siksnys V
    Methods; 2017 May; 121-122():3-8. PubMed ID: 28344037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programmable RNA recognition and cleavage by CRISPR/Cas9.
    O'Connell MR; Oakes BL; Sternberg SH; East-Seletsky A; Kaplan M; Doudna JA
    Nature; 2014 Dec; 516(7530):263-6. PubMed ID: 25274302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Compact, High-Accuracy Cas9 with a Dinucleotide PAM for In Vivo Genome Editing.
    Edraki A; Mir A; Ibraheim R; Gainetdinov I; Yoon Y; Song CQ; Cao Y; Gallant J; Xue W; Rivera-Pérez JA; Sontheimer EJ
    Mol Cell; 2019 Feb; 73(4):714-726.e4. PubMed ID: 30581144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9 Guide RNA Design Rules for Predicting Activity.
    Hiranniramol K; Chen Y; Wang X
    Methods Mol Biol; 2020; 2115():351-364. PubMed ID: 32006410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.
    Chen W; Zhang H; Zhang Y; Wang Y; Gan J; Ji Q
    PLoS Biol; 2019 Oct; 17(10):e3000496. PubMed ID: 31603896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered CRISPR-Cas9 nucleases with altered PAM specificities.
    Kleinstiver BP; Prew MS; Tsai SQ; Topkar VV; Nguyen NT; Zheng Z; Gonzales AP; Li Z; Peterson RT; Yeh JR; Aryee MJ; Joung JK
    Nature; 2015 Jul; 523(7561):481-5. PubMed ID: 26098369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A catalogue of biochemically diverse CRISPR-Cas9 orthologs.
    Gasiunas G; Young JK; Karvelis T; Kazlauskas D; Urbaitis T; Jasnauskaite M; Grusyte MM; Paulraj S; Wang PH; Hou Z; Dooley SK; Cigan M; Alarcon C; Chilcoat ND; Bigelyte G; Curcuru JL; Mabuchi M; Sun Z; Fuchs RT; Schildkraut E; Weigele PR; Jack WE; Robb GB; Venclovas Č; Siksnys V
    Nat Commun; 2020 Nov; 11(1):5512. PubMed ID: 33139742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An engineered ScCas9 with broad PAM range and high specificity and activity.
    Chatterjee P; Jakimo N; Lee J; Amrani N; Rodríguez T; Koseki SRT; Tysinger E; Qing R; Hao S; Sontheimer EJ; Jacobson J
    Nat Biotechnol; 2020 Oct; 38(10):1154-1158. PubMed ID: 32393822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method to convert mRNA into a gRNA library for CRISPR/Cas9 editing of any organism.
    Arakawa H
    Sci Adv; 2016 Aug; 2(8):e1600699. PubMed ID: 27574704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Making point mutations in Escherichia coli BL21 genome using the CRISPR-Cas9 system.
    Wang X; He J; Le K
    FEMS Microbiol Lett; 2018 Jul; 365(14):. PubMed ID: 29596631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome Editing in Zebrafish by ScCas9 Recognizing NNG PAM.
    Liu Y; Liang F; Dong Z; Li S; Ye J; Qin W
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examination of CRISPR/Cas9 design tools and the effect of target site accessibility on Cas9 activity.
    Lee CM; Davis TH; Bao G
    Exp Physiol; 2018 Apr; 103(4):456-460. PubMed ID: 28303677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer adjacent motif (PAM) sequences.
    Mekler V; Kuznedelov K; Severinov K
    J Biol Chem; 2020 May; 295(19):6509-6517. PubMed ID: 32241913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cas9, Cpf1 and C2c1/2/3-What's next?
    Nakade S; Yamamoto T; Sakuma T
    Bioengineered; 2017 May; 8(3):265-273. PubMed ID: 28140746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.