These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 33346757)
21. Tuning Intermolecular Interactions to Enhance the Cyclability of Non-Aqueous, Organic Redox Flow Batteries. Zhang L; Liu Y; Chen Y; Zhu Y; Wang R; Dai G; Zhang X; Zhao Y Chem Asian J; 2022 Dec; 17(24):e202200901. PubMed ID: 36239205 [TBL] [Abstract][Full Text] [Related]
22. Asymmetric and Symmetric Redox Flow Batteries for Energy-Efficient, High-Recovery Water Desalination. Mohandass G; Chen W; Krishnan S; Kim T Environ Sci Technol; 2022 Apr; 56(7):4477-4488. PubMed ID: 35297617 [TBL] [Abstract][Full Text] [Related]
23. Porphyrin-Based Symmetric Redox-Flow Batteries towards Cold-Climate Energy Storage. Ma T; Pan Z; Miao L; Chen C; Han M; Shang Z; Chen J Angew Chem Int Ed Engl; 2018 Mar; 57(12):3158-3162. PubMed ID: 29363241 [TBL] [Abstract][Full Text] [Related]
24. An Ambient Temperature Molten Sodium-Vanadium Battery with Aqueous Flowing Catholyte. Liu C; Shamie JS; Shaw LL; Sprenkle VL ACS Appl Mater Interfaces; 2016 Jan; 8(2):1545-52. PubMed ID: 26720551 [TBL] [Abstract][Full Text] [Related]
25. Molecular Engineering of Azobenzene-Based Anolytes Towards High-Capacity Aqueous Redox Flow Batteries. Zu X; Zhang L; Qian Y; Zhang C; Yu G Angew Chem Int Ed Engl; 2020 Dec; 59(49):22163-22170. PubMed ID: 32841494 [TBL] [Abstract][Full Text] [Related]
26. Hybrid Electrolyte Engineering Enables Safe and Wide-Temperature Redox Flow Batteries. Zhang L; Yu G Angew Chem Int Ed Engl; 2021 Jun; 60(27):15028-15035. PubMed ID: 33914394 [TBL] [Abstract][Full Text] [Related]
27. A pH-Neutral, Aqueous Redox Flow Battery with a 3600-Cycle Lifetime: Micellization-Enabled High Stability and Crossover Suppression. Chai J; Wang X; Lashgari A; Williams CK; Jiang JJ ChemSusChem; 2020 Aug; 13(16):4069-4077. PubMed ID: 32658334 [TBL] [Abstract][Full Text] [Related]
32. In Situ Derivatization of an Intrinsic Iron Impurity as a Surface-Confined Iron(II)tris(2,2'-bipyridine) Complex on MWCNT and Its Application to Selective Electrochemical Sensing of DNA's Purine Bases. Mayuri P; Kumar AS Langmuir; 2015 Jun; 31(21):5945-51. PubMed ID: 25978298 [TBL] [Abstract][Full Text] [Related]
33. The Dual Role of Bridging Phenylene in an Extended Bipyridine System for High-Voltage and Stable Two-Electron Storage in Redox Flow Batteries. Pan M; Lu Y; Lu S; Yu B; Wei J; Liu Y; Jin Z ACS Appl Mater Interfaces; 2021 Sep; 13(37):44174-44183. PubMed ID: 34496562 [TBL] [Abstract][Full Text] [Related]
34. Synthesis of layered (2-D) V-based bimetallic oxalates from non-aqueous media that cannot be synthesized from aqueous media. Min KS; Miller JS Dalton Trans; 2006 May; (20):2463-7. PubMed ID: 16705346 [TBL] [Abstract][Full Text] [Related]
35. Redox-Driven Route for Widening Voltage Window in Asymmetric Supercapacitor. Sahoo R; Pham DT; Lee TH; Luu THT; Seok J; Lee YH ACS Nano; 2018 Aug; 12(8):8494-8505. PubMed ID: 30044606 [TBL] [Abstract][Full Text] [Related]
37. Spatial Structure Regulation: A Rod-Shaped Viologen Enables Long Lifetime in Aqueous Redox Flow Batteries. Li H; Fan H; Hu B; Hu L; Chang G; Song J Angew Chem Int Ed Engl; 2021 Dec; 60(52):26971-26977. PubMed ID: 34647654 [TBL] [Abstract][Full Text] [Related]
38. PEGylation-Enabled Extended Cyclability of a Non-aqueous Redox Flow Battery. Chai J; Lashgari A; Cao Z; Williams CK; Wang X; Dong J; Jiang JJ ACS Appl Mater Interfaces; 2020 Apr; 12(13):15262-15270. PubMed ID: 32150369 [TBL] [Abstract][Full Text] [Related]