These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 33346818)
1. Divergence in Photoperiod Responses of a Classical Biological Control Agent, Galerucella calmariensis (Coleoptera: Chrysomelidae), Across a Climatic and Latitudinal Gradient. Wepprich T; Grevstad FS Environ Entomol; 2021 Apr; 50(2):306-316. PubMed ID: 33346818 [TBL] [Abstract][Full Text] [Related]
2. Seasonal adaptations to day length in ecotypes of Diorhabda spp. (Coleoptera: Chrysomelidae) inform selection of agents against saltcedars (Tamarix spp.). Dalin P; Bean DW; Dudley TL; Carney VA; Eberts D; Gardner KT; Hebertson E; Jones EN; Kazmer DJ; Michels GJ; O'Meara SA; Thompson DC Environ Entomol; 2010 Oct; 39(5):1666-75. PubMed ID: 22546466 [TBL] [Abstract][Full Text] [Related]
4. Comparative Studies of Reproductive Diapause in North American Populations of Three Hippodamia Species (Coleoptera: Coccinellidae). Obrycki JJ Environ Entomol; 2020 Oct; 49(5):1164-1170. PubMed ID: 32860040 [TBL] [Abstract][Full Text] [Related]
5. Northward range expansion requires synchronization of both overwintering behaviour and physiology with photoperiod in the invasive Colorado potato beetle (Leptinotarsa decemlineata). Lehmann P; Lyytinen A; Piiroinen S; Lindström L Oecologia; 2014 Sep; 176(1):57-68. PubMed ID: 25012598 [TBL] [Abstract][Full Text] [Related]
6. The consequences of photoperiodism for organisms in new climates. Grevstad FS; Coop LB Ecol Appl; 2015 Sep; 25(6):1506-17. PubMed ID: 26552260 [TBL] [Abstract][Full Text] [Related]
7. Photoperiodic Induction of Adult Diapause in North American Populations of the Convergent Lady Beetle (Coleoptera: Coccinellidae). Obrycki JJ; McCord JS; Mercer NH; White JA Environ Entomol; 2018 Dec; 47(6):1596-1600. PubMed ID: 30165434 [TBL] [Abstract][Full Text] [Related]
8. Population dependent effects of photoperiod on diapause related physiological traits in an invasive beetle (Leptinotarsa decemlineata). Lehmann P; Lyytinen A; Sinisalo T; Lindström L J Insect Physiol; 2012 Aug; 58(8):1146-58. PubMed ID: 22705255 [TBL] [Abstract][Full Text] [Related]
9. The role of latitudinal, genetic and temperature variation in the induction of diapause of Papilio glaucus (Lepidoptera: Papilionidae). Ryan SF; Valella P; Thivierge G; Aardema ML; Scriber JM Insect Sci; 2018 Apr; 25(2):328-336. PubMed ID: 27900827 [TBL] [Abstract][Full Text] [Related]
10. Geographic Variation in Photoperiodic Response for Induction of Pseudopupal Diapause in Epicauta gorhami (Coleoptera: Meloidae). Terao M; Tokuda M; Shintani Y Environ Entomol; 2021 Oct; 50(5):1145-1150. PubMed ID: 34169313 [TBL] [Abstract][Full Text] [Related]
11. Reproductive Diapause in North American Populations of the Introduced Lady Beetle Hippodamia variegata (Coleoptera: Coccinellidae). Obrycki JJ Environ Entomol; 2018 Oct; 47(5):1337-1343. PubMed ID: 30099500 [TBL] [Abstract][Full Text] [Related]
12. Northern Drosophila montana flies show variation both within and between cline populations in the critical day length evoking reproductive diapause. Lankinen P; Tyukmaeva VI; Hoikkala A J Insect Physiol; 2013 Aug; 59(8):745-51. PubMed ID: 23702203 [TBL] [Abstract][Full Text] [Related]
13. Circadian clock genes link photoperiodic signals to lipid accumulation during diapause preparation in the diapause-destined female cabbage beetles Colaphellus bowringi. Zhu L; Tian Z; Guo S; Liu W; Zhu F; Wang XP Insect Biochem Mol Biol; 2019 Jan; 104():1-10. PubMed ID: 30423421 [TBL] [Abstract][Full Text] [Related]
14. Adaptive latitudinal cline of photoperiodic diapause induction in the parasitoid Nasonia vitripennis in Europe. Paolucci S; van de Zande L; Beukeboom LW J Evol Biol; 2013 Apr; 26(4):705-18. PubMed ID: 23496837 [TBL] [Abstract][Full Text] [Related]
15. Seasonal timing of diapause induction limits the effective range of Diorhabda elongata deserticola (Coleoptera: Chrysomelidae) as a biological control agent for tamarisk (Tamarix spp.). Bean DW; Dudley TL; Keller JC Environ Entomol; 2007 Feb; 36(1):15-25. PubMed ID: 17349111 [TBL] [Abstract][Full Text] [Related]
16. Geographic variation in diapause induction and termination of the cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). Chen YS; Chen C; He HM; Xia QW; Xue FS J Insect Physiol; 2013 Sep; 59(9):855-62. PubMed ID: 23792065 [TBL] [Abstract][Full Text] [Related]
17. Explaining the sawtooth: latitudinal periodicity in a circadian gene correlates with shifts in generation number. Levy RC; Kozak GM; Wadsworth CB; Coates BS; Dopman EB J Evol Biol; 2015 Jan; 28(1):40-53. PubMed ID: 25430782 [TBL] [Abstract][Full Text] [Related]
18. Distinct Physiological Mechanisms Induce Latitudinal and Sexual Differences in the Photoperiodic Induction of Diapause in a Fly. Yamaguchi K; Goto SG J Biol Rhythms; 2019 Jun; 34(3):293-306. PubMed ID: 30966851 [TBL] [Abstract][Full Text] [Related]
19. Divergence in larval diapause induction between the rice and water-oat populations of the striped stem borer, Chilo suppressalis (Walker) (Lepidoptera: Crambidae). Zhou Y; Sun D; Quan WL; Ding N; Liu W; Ma WH; Wang XP Environ Sci Pollut Res Int; 2018 Oct; 25(29):29715-29724. PubMed ID: 30145755 [TBL] [Abstract][Full Text] [Related]
20. Parental effect of diapause in relation to photoperiod and temperature in the cabbage beetle, Colaphellus bowringi (Coleoptera: Chrysomelidae). He HM; Xiao HJ; Xue FS Bull Entomol Res; 2018 Dec; 108(6):773-780. PubMed ID: 29397053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]