BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 33347271)

  • 1. Unified Description of the Specific Heat of Ionic Bulk Materials Containing Nanoparticles.
    Leonardi E; Floris A; Bose S; D'Aguanno B
    ACS Nano; 2021 Jan; 15(1):563-574. PubMed ID: 33347271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermostatic properties of nitrate molten salts and their solar and eutectic mixtures.
    D'Aguanno B; Karthik M; Grace AN; Floris A
    Sci Rep; 2018 Jul; 8(1):10485. PubMed ID: 29992980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Low-Cost Particulates Used as Energy Storage and Heat-Transfer Medium in Concentrated Solar Power Systems.
    Saeed RS; Alswaiyd A; Saleh NS; Alaqel S; Djajadiwinata E; El-Leathy A; Danish SN; Al-Ansary H; Jeter S; Al-Suhaibani Z; Almutairi Z
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and Characterization of Molten Salt Nanofluids for Thermal Energy Storage Application in Concentrated Solar Power Plants-Mechanistic Understanding of Specific Heat Capacity Enhancement.
    Ma B; Shin D; Banerjee D
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33207602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications.
    Lasfargues M; Stead G; Amjad M; Ding Y; Wen D
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increment of specific heat capacity of solar salt with SiO2 nanoparticles.
    Andreu-Cabedo P; Mondragon R; Hernandez L; Martinez-Cuenca R; Cabedo L; Julia JE
    Nanoscale Res Lett; 2014; 9(1):582. PubMed ID: 25346648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-efficiency solar thermoelectric conversion enabled by movable charging of molten salts.
    Chang C; Wang Z; Fu B; Ji Y
    Sci Rep; 2020 Nov; 10(1):20500. PubMed ID: 33235267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the relationship between the specific heat enhancement of salt-based nanofluids and the ionic exchange capacity of nanoparticles.
    Mondragón R; Juliá JE; Cabedo L; Navarrete N
    Sci Rep; 2018 May; 8(1):7532. PubMed ID: 29760478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simulation study on the glass transition behavior and relevant segmental dynamics in free-standing polymer nanocomposite films.
    Li SJ; Qian HJ; Lu ZY
    Soft Matter; 2019 Jun; 15(22):4476-4485. PubMed ID: 31111851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosafety and bioapplication of nanomaterials by designing protein-nanoparticle interactions.
    Yang ST; Liu Y; Wang YW; Cao A
    Small; 2013 May; 9(9-10):1635-53. PubMed ID: 23341247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Characterization of Protein Adsorption onto Nanoparticles by Fluorescence Correlation Spectroscopy.
    Shang L; Nienhaus GU
    Acc Chem Res; 2017 Feb; 50(2):387-395. PubMed ID: 28145686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free energy for inclusion of nanoparticles in solvated polymer brushes from molecular dynamics simulations.
    Gao HM; Li B; Zhang R; Sun ZY; Lu ZY
    J Chem Phys; 2020 Mar; 152(9):094905. PubMed ID: 33480731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption and diffusion of colloidal Au nanoparticles at a liquid-vapor interface.
    Poddar NN; Amar JG
    J Chem Phys; 2014 Jun; 140(24):244702. PubMed ID: 24985663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On Correlation Effect of the Van-der-Waals and Intramolecular Forces for the Nucleotide Chain - Metallic Nanoparticles - Carbon Nanotube Binding.
    Khusenov MA; Dushanov EB; Kholmurodov KhT; Zaki MM; Sweilam NH
    Open Biochem J; 2016; 10():17-26. PubMed ID: 27099634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review on thermal properties of nanofluids: Recent developments.
    Angayarkanni SA; Philip J
    Adv Colloid Interface Sci; 2015 Nov; 225():146-76. PubMed ID: 26391519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Observation of Interactions between Nanoparticles and Nanoparticle Self-Assembly in Solution.
    Tan SF; Chee SW; Lin G; Mirsaidov U
    Acc Chem Res; 2017 Jun; 50(6):1303-1312. PubMed ID: 28485945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved validation for single particle ICP-MS analysis using a pneumatic nebulizer / microdroplet generator sample introduction system for multi-mode nanoparticle determination.
    Rosenkranz D; Kriegel FL; Mavrakis E; Pergantis SA; Reichardt P; Tentschert J; Jakubowski N; Laux P; Panne U; Luch A
    Anal Chim Acta; 2020 Feb; 1099():16-25. PubMed ID: 31986273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular interactions and thermal transport in ionic liquids with carbon nanomaterials.
    França JMP; Nieto de Castro CA; Pádua AAH
    Phys Chem Chem Phys; 2017 Jul; 19(26):17075-17087. PubMed ID: 28621790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermophysical Property Measurements of Tetrabutylphosphonium Oxalate (TBPOx) Ionic Semiclathrate Hydrate as a Media for the Thermal Energy Storage System.
    Miyamoto T; Koyama R; Kurokawa N; Hotta A; Alavi S; Ohmura R
    Front Chem; 2020; 8():547. PubMed ID: 32766205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of mono- and poly-dispersed nanoparticles on emulsion droplets: antagonistic
    Khedr A; Striolo A
    Phys Chem Chem Phys; 2020 Oct; 22(39):22662-22673. PubMed ID: 33015700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.