These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33347272)

  • 21. Understanding and Preventing Lubrication Failure at the Carbon Atomic Steps.
    Yan W; Bhuiyan FH; Tang C; Wei L; Jiang Y; Jang S; Liu Y; Wu J; Wang W; Wang Y; Martini A; Qian L; Kim SH; Chen L
    Small; 2023 Sep; 19(37):e2301515. PubMed ID: 37162454
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Graphene mechanics: II. Atomic stress distribution during indentation until rupture.
    Costescu BI; Gräter F
    Phys Chem Chem Phys; 2014 Jun; 16(24):12582-90. PubMed ID: 24834440
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dependence of the friction strengthening of graphene on velocity.
    Zeng X; Peng Y; Liu L; Lang H; Cao X
    Nanoscale; 2018 Jan; 10(4):1855-1864. PubMed ID: 29309078
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale.
    Deng Z; Smolyanitsky A; Li Q; Feng XQ; Cannara RJ
    Nat Mater; 2012 Dec; 11(12):1032-7. PubMed ID: 23064494
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Velocity dependent friction laws in contact mode atomic force microscopy.
    Stark RW; Schitter G; Stemmer A
    Ultramicroscopy; 2004 Aug; 100(3-4):309-17. PubMed ID: 15231324
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wear Resistance Limited by Step Edge Failure: The Rise and Fall of Graphene as an Atomically Thin Lubricating Material.
    Qi Y; Liu J; Zhang J; Dong Y; Li Q
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):1099-1106. PubMed ID: 28073278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of frictional forces on graphene and graphite.
    Lee H; Lee N; Seo Y; Eom J; Lee S
    Nanotechnology; 2009 Aug; 20(32):325701. PubMed ID: 19620757
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct observation of atomic step edges on the rutile TiO
    Wen HF; Miyazaki M; Zhang Q; Adachi Y; Li YJ; Sugawara Y
    Phys Chem Chem Phys; 2018 Nov; 20(44):28331-28337. PubMed ID: 30398504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Giant and Tunable Anisotropy of Nanoscale Friction in Graphene.
    Almeida CM; Prioli R; Fragneaud B; Cançado LG; Paupitz R; Galvão DS; De Cicco M; Menezes MG; Achete CA; Capaz RB
    Sci Rep; 2016 Aug; 6():31569. PubMed ID: 27534691
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultralow friction of ink-jet printed graphene flakes.
    Buzio R; Gerbi A; Uttiya S; Bernini C; Del Rio Castillo AE; Palazon F; Siri AS; Pellegrini V; Pellegrino L; Bonaccorso F
    Nanoscale; 2017 Jun; 9(22):7612-7624. PubMed ID: 28540370
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Suppressing Nanoscale Wear by Graphene/Graphene Interfacial Contact Architecture: A Molecular Dynamics Study.
    Xu Q; Li X; Zhang J; Hu Y; Wang H; Ma T
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40959-40968. PubMed ID: 29083163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluorination of graphene enhances friction due to increased corrugation.
    Li Q; Liu XZ; Kim SP; Shenoy VB; Sheehan PE; Robinson JT; Carpick RW
    Nano Lett; 2014 Sep; 14(9):5212-7. PubMed ID: 25072968
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative atomic resolution force imaging on epitaxial graphene with reactive and nonreactive AFM probes.
    Boneschanscher MP; van der Lit J; Sun Z; Swart I; Liljeroth P; Vanmaekelbergh D
    ACS Nano; 2012 Nov; 6(11):10216-21. PubMed ID: 23039032
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoscale interfacial friction and adhesion on supported versus suspended monolayer and multilayer graphene.
    Deng Z; Klimov NN; Solares SD; Li T; Xu H; Cannara RJ
    Langmuir; 2013 Jan; 29(1):235-43. PubMed ID: 23215163
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tip convolution on HOPG surfaces measured in AM-AFM and interpreted using a combined experimental and simulation approach.
    Hu X; Chan N; Martini A; Egberts P
    Nanotechnology; 2017 Jan; 28(2):025702. PubMed ID: 27905317
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lifted graphene nanoribbons on gold: from smooth sliding to multiple stick-slip regimes.
    Gigli L; Manini N; Tosatti E; Guerra R; Vanossi A
    Nanoscale; 2018 Jan; 10(4):2073-2080. PubMed ID: 29323381
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dimensions and the profile of surface nanobubbles: tip-nanobubble interactions and nanobubble deformation in atomic force microscopy.
    Walczyk W; Schönherr H
    Langmuir; 2014 Oct; 30(40):11955-65. PubMed ID: 25222759
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Subnanometer Resolution and Enhanced Friction Contrast at the Surface of Perylene Diimide PDI8-CN
    Buzio R; Gerbi A; Barra M; Chiarella F; Gnecco E; Cassinese A
    Langmuir; 2018 Mar; 34(10):3207-3214. PubMed ID: 29482328
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A hillock-like phenomenon with low friction and adhesion on a graphene surface induced by relative sliding at the interface of graphene and the SiO
    Fan N; Guo J; Jing G; Liu C; Wang Q; Wu G; Jiang H; Peng B
    Nanoscale Adv; 2020 Jun; 2(6):2548-2557. PubMed ID: 36133360
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sliding Friction and Superlubricity of Colloidal AFM Probes Coated by Tribo-Induced Graphitic Transfer Layers.
    Buzio R; Gerbi A; Bernini C; Repetto L; Vanossi A
    Langmuir; 2022 Oct; 38(41):12570-12580. PubMed ID: 36190908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.