These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 33347296)

  • 1. Predicting Hemiwicking Dynamics on Textured Substrates.
    Natarajan B; Jaishankar A; King M; Oktasendra F; Avis SJ; Konicek AR; Wadsworth G; Jusufi A; Kusumaatmaja H; Yeganeh MS
    Langmuir; 2021 Jan; 37(1):188-195. PubMed ID: 33347296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction and optimization of liquid propagation in micropillar arrays.
    Xiao R; Enright R; Wang EN
    Langmuir; 2010 Oct; 26(19):15070-5. PubMed ID: 20806979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple analytic model for predicting the wicking velocity in micropillar arrays.
    Krishnan SR; Bal J; Putnam SA
    Sci Rep; 2019 Dec; 9(1):20074. PubMed ID: 31882681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsaturated hemiwicking dynamics on surfaces with irregular roughness.
    Varady MJ; Mantooth BA
    J Colloid Interface Sci; 2021 Dec; 604():104-112. PubMed ID: 34271485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous micropillar structures for retaining low surface tension liquids.
    Agonafer DD; Lee H; Vasquez PA; Won Y; Jung KW; Lingamneni S; Ma B; Shan L; Shuai S; Du Z; Maitra T; Palko JW; Goodson KE
    J Colloid Interface Sci; 2018 Mar; 514():316-327. PubMed ID: 29275250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a Better Understanding of Hemiwicking: A Simple Model to Comprehensive Prediction.
    Chen H; Zang H; Li X; Zhao Y
    Langmuir; 2019 Feb; 35(7):2854-2864. PubMed ID: 30673251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable Stamp Printing and Fabrication of Hemiwicking Surfaces.
    Germain T; Brewer C; Scott J; Putnam SA
    J Vis Exp; 2018 Dec; (142):. PubMed ID: 30614489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of high-aspect-ratio micropillar arrays against adhesive and capillary forces.
    Chandra D; Yang S
    Acc Chem Res; 2010 Aug; 43(8):1080-91. PubMed ID: 20552977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscale liquid dynamics and the effect on macroscale propagation in pillar arrays.
    Xiao R; Wang EN
    Langmuir; 2011 Sep; 27(17):10360-4. PubMed ID: 21786799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Viscous Dissipative Processes on the Wetting of Textured Surfaces.
    Grewal HS; Nam Kim H; Cho IJ; Yoon ES
    Sci Rep; 2015 Sep; 5():14159. PubMed ID: 26390958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamics beyond Navier-Stokes: the slip flow model.
    Yudistiawan WP; Ansumali S; Karlin IV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016705. PubMed ID: 18764079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On a moving liquid film and its instability on textured surfaces.
    Hamamoto-Kurosaki M; Okumura K
    Eur Phys J E Soft Matter; 2009 Nov; 30(3):283-90. PubMed ID: 19856005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-field-based lattice Boltzmann modeling of large-density-ratio two-phase flows.
    Liang H; Xu J; Chen J; Wang H; Chai Z; Shi B
    Phys Rev E; 2018 Mar; 97(3-1):033309. PubMed ID: 29776082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multicomponent flow on curved surfaces: A vielbein lattice Boltzmann approach.
    Ambruş VE; Busuioc S; Wagner AJ; Paillusson F; Kusumaatmaja H
    Phys Rev E; 2019 Dec; 100(6-1):063306. PubMed ID: 31962535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Galilean-invariant preconditioned central-moment lattice Boltzmann method without cubic velocity errors for efficient steady flow simulations.
    Hajabdollahi F; Premnath KN
    Phys Rev E; 2018 May; 97(5-1):053303. PubMed ID: 29906868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition from Cassie to impaled state during drop impact on groove-textured solid surfaces.
    Vaikuntanathan V; Sivakumar D
    Soft Matter; 2014 May; 10(17):2991-3002. PubMed ID: 24695648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lattice-Boltzmann simulations of the dynamics of liquid barrels.
    Ruiz-Gutiérrez É; Ledesma-Aguilar R
    J Phys Condens Matter; 2020 May; 32(21):214007. PubMed ID: 31989993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of rotating paramagnetic particles simulated by lattice Boltzmann and particle dynamics methods.
    Yadav A; Calhoun R; Phelan PE; Vuppu AK; Garcia AA; Hayes M
    IEE Proc Nanobiotechnol; 2006 Dec; 153(6):145-50. PubMed ID: 17187446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Micropillar Array Morphology on Liquid Propagation Coefficient Enhancement.
    Zhang RP; Mei M; Qiu H
    Langmuir; 2023 Feb; 39(8):3083-3093. PubMed ID: 36802613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axisymmetric multiphase lattice Boltzmann method.
    Srivastava S; Perlekar P; Boonkkamp JH; Verma N; Toschi F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013309. PubMed ID: 23944585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.