These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33347302)

  • 61. Lighting up the Raman signal of molecules in the vicinity of graphene related materials.
    Ling X; Huang S; Deng S; Mao N; Kong J; Dresselhaus MS; Zhang J
    Acc Chem Res; 2015 Jul; 48(7):1862-70. PubMed ID: 26056861
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Epitaxial Aluminum Surface-Enhanced Raman Spectroscopy Substrates for Large-Scale 2D Material Characterization.
    Raja SS; Cheng CW; Sang Y; Chen CA; Zhang XQ; Dubey A; Yen TJ; Chang YM; Lee YH; Gwo S
    ACS Nano; 2020 Jul; 14(7):8838-8845. PubMed ID: 32589398
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Highly efficient silver particle layers on glass substrate synthesized by the sonochemical method for surface enhanced Raman spectroscopy purposes.
    Suchomel P; Prucek R; Černá K; Fargašová A; Panáček A; Gedanken A; Zbořil R; Kvítek L
    Ultrason Sonochem; 2016 Sep; 32():165-172. PubMed ID: 27150757
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Area-Specific, Hierarchical Nanowrinkling of Two-Dimensional Materials.
    Rhee D; Lee YL; Odom TW
    ACS Nano; 2023 Apr; 17(7):6781-6788. PubMed ID: 36989457
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hexagonal boron nitride: a promising substrate for graphene with high heat dissipation.
    Zhang Z; Hu S; Chen J; Li B
    Nanotechnology; 2017 Jun; 28(22):225704. PubMed ID: 28492182
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effective characterization of polymer residues on two-dimensional materials by Raman spectroscopy.
    Park JH; Choi SH; Chae WU; Stephen B; Park HK; Yang W; Kim SM; Lee JS; Kim KK
    Nanotechnology; 2015 Dec; 26(48):485701. PubMed ID: 26541553
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [Fabrication of reproducible surface enhanced Raman scattering substrate and its application].
    Ni DD; Wang WW; Yao JL; Zhang XJ; Gu RA
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Feb; 31(2):394-7. PubMed ID: 21510389
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Growth and spectroscopic characterization of monolayer and few-layer hexagonal boron nitride on metal substrates.
    Feigelson BN; Bermudez VM; Hite JK; Robinson ZR; Wheeler VD; Sridhara K; Hernández SC
    Nanoscale; 2015 Feb; 7(8):3694-702. PubMed ID: 25640166
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Vibrational Imaging and Quantification of Two-Dimensional Hexagonal Boron Nitride with Stimulated Raman Scattering.
    Ling J; Miao X; Sun Y; Feng Y; Zhang L; Sun Z; Ji M
    ACS Nano; 2019 Dec; 13(12):14033-14040. PubMed ID: 31725258
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Fabrication of gold-coated PDMS surfaces with arrayed triangular micro/nanopyramids for use as SERS substrates.
    Zhang J; Yan Y; Miao P; Cai J
    Beilstein J Nanotechnol; 2017; 8():2271-2282. PubMed ID: 29181284
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Three-Dimensional SERS Substrates Formed with Plasmonic Core-Satellite Nanostructures.
    Wu LA; Li WE; Lin DZ; Chen YF
    Sci Rep; 2017 Oct; 7(1):13066. PubMed ID: 29026173
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Single-Step Fabrication of High-Throughput Surface-Enhanced Raman Scattering Substrates.
    Zeng Y; Du X; Gao B; Liu B; Xie Z; Gu Z
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4222-4232. PubMed ID: 29297223
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Characterization of a commercialized SERS-active substrate and its application to the identification of intact Bacillus endospores.
    Alexander TA; Le DM
    Appl Opt; 2007 Jun; 46(18):3878-90. PubMed ID: 17538686
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Molecular self-assembly on graphene on SiO2 and h-BN substrates.
    Järvinen P; Hämäläinen SK; Banerjee K; Häkkinen P; Ijäs M; Harju A; Liljeroth P
    Nano Lett; 2013 Jul; 13(7):3199-204. PubMed ID: 23786613
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Combination of surface- and interference-enhanced Raman scattering by CuS nanocrystals on nanopatterned Au structures.
    Milekhin AG; Yeryukov NA; Sveshnikova LL; Duda TA; Rodyakina EE; Gridchin VA; Sheremet ES; Zahn DR
    Beilstein J Nanotechnol; 2015; 6():749-54. PubMed ID: 25977845
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Synthesis and Characterization of Poly(Ethylene Glycol) Based Thermo-Responsive Hydrogels for Cell Sheet Engineering.
    Son KH; Lee JW
    Materials (Basel); 2016 Oct; 9(10):. PubMed ID: 28773974
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Design and fabrication of biocompatible wrinkled hydrogel films with selective antibiofouling properties.
    González-Henríquez CM; Sarabia-Vallejos MA; Terraza CA; Del Campo-García A; Lopez-Martinez E; Cortajarena AL; Casado-Losada I; Martínez-Campos E; Rodríguez-Hernández J
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():803-812. PubMed ID: 30678971
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Synthesis of wafer-scale hexagonal boron nitride monolayers free of aminoborane nanoparticles by chemical vapor deposition.
    Han J; Lee JY; Kwon H; Yeo JS
    Nanotechnology; 2014 Apr; 25(14):145604. PubMed ID: 24633210
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Surface-enhanced Raman scattering on silvered porous alumina templates: role of multipolar surface plasmon resonant modes.
    Terekhov SN; Kachan SM; Panarin AY; Mojzes P
    Phys Chem Chem Phys; 2015 Dec; 17(47):31780-9. PubMed ID: 26563558
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Solution-Processed Dielectrics Based on Thickness-Sorted Two-Dimensional Hexagonal Boron Nitride Nanosheets.
    Zhu J; Kang J; Kang J; Jariwala D; Wood JD; Seo JW; Chen KS; Marks TJ; Hersam MC
    Nano Lett; 2015 Oct; 15(10):7029-36. PubMed ID: 26348822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.