These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 3334737)

  • 1. Strain rate and mineral content in fracture models of bone.
    Currey JD
    J Orthop Res; 1988; 6(1):32-8. PubMed ID: 3334737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tensile yield in compact bone is determined by strain, post-yield behaviour by mineral content.
    Currey JD
    J Biomech; 2004 Apr; 37(4):549-56. PubMed ID: 14996567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tensile behavior of cortical bone: dependence of organic matrix material properties on bone mineral content.
    Kotha SP; Guzelsu N
    J Biomech; 2007; 40(1):36-45. PubMed ID: 16434048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incompatible mechanical properties in compact bone.
    Currey J
    J Theor Biol; 2004 Dec; 231(4):569-80. PubMed ID: 15488534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element modeling for strain rate dependency of fracture resistance in compact bone.
    Charoenphan S; Polchai A
    J Biomech Eng; 2007 Feb; 129(1):20-5. PubMed ID: 17227094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hardness, an indicator of the mechanical competence of cancellous bone.
    Hodgskinson R; Currey JD; Evans GP
    J Orthop Res; 1989; 7(5):754-8. PubMed ID: 2760749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of strain rate on the mechanical properties of human cortical bone.
    Hansen U; Zioupos P; Simpson R; Currey JD; Hynd D
    J Biomech Eng; 2008 Feb; 130(1):011011. PubMed ID: 18298187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tensile and compressive stress yield criteria for cancellous bone.
    Cowin SC; He QC
    J Biomech; 2005 Jan; 38(1):141-4. PubMed ID: 15519349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting fracture of the femoral neck.
    Stepanskiy L; Seliktar RR
    J Biomech; 2007; 40(8):1813-23. PubMed ID: 17046773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A viscoelastic, viscoplastic model of cortical bone valid at low and high strain rates.
    Johnson TP; Socrate S; Boyce MC
    Acta Biomater; 2010 Oct; 6(10):4073-80. PubMed ID: 20417735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical behavior of human trabecular bone after overloading.
    Keaveny TM; Wachtel EF; Kopperdahl DL
    J Orthop Res; 1999 May; 17(3):346-53. PubMed ID: 10376722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimentally determined microcracking around a circular hole in a flat plate of bone: comparison with predicted stresses.
    Zioupos P; Currey JD; Mirza MS; Barton DC
    Philos Trans R Soc Lond B Biol Sci; 1995 Mar; 347(1322):383-96. PubMed ID: 7597104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure.
    Zioupos P; Hansen U; Currey JD
    J Biomech; 2008 Oct; 41(14):2932-9. PubMed ID: 18786670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of microstructure on the mechanical properties of Haversian cortical bone.
    Hoc T; Henry L; Verdier M; Aubry D; Sedel L; Meunier A
    Bone; 2006 Apr; 38(4):466-74. PubMed ID: 16332459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constitutive modelling of inelastic behaviour of cortical bone.
    Natali AN; Carniel EL; Pavan PG
    Med Eng Phys; 2008 Sep; 30(7):905-12. PubMed ID: 18207444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cumulative damage model for bone fracture.
    Carter DR; Caler WE
    J Orthop Res; 1985; 3(1):84-90. PubMed ID: 3981298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High strain rate response of rabbit femur bones.
    Shunmugasamy VC; Gupta N; Coelho PG
    J Biomech; 2010 Nov; 43(15):3044-50. PubMed ID: 20673668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial orientation in bone samples and Young's modulus.
    Geraets WG; van Ruijven LJ; Verheij JG; van der Stelt PF; van Eijden TM
    J Biomech; 2008 Jul; 41(10):2206-10. PubMed ID: 18539283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.