These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 33347402)

  • 1. Teleoperation of an Ankle-Foot Prosthesis With a Wrist Exoskeleton.
    Welker CG; Chiu VL; Voloshina AS; Collins SH; Okamura AM
    IEEE Trans Biomed Eng; 2021 May; 68(5):1714-1725. PubMed ID: 33347402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Ankle-Foot Prosthesis Emulator Capable of Modulating Center of Pressure.
    Chiu VL; Voloshina AS; Collins SH
    IEEE Trans Biomed Eng; 2020 Jan; 67(1):166-176. PubMed ID: 30969914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Evaluation of a Knee Flexion Assistance Exoskeleton for People with Transtibial Amputation.
    Anderson AJ; Hudak YF; Gauthier KA; Muir BC; Aubin PM
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cognitive performance and brain dynamics during walking with a novel bionic foot: A pilot study.
    De Pauw K; Cherelle P; Tassignon B; Van Cutsem J; Roelands B; Marulanda FG; Lefeber D; Vanderborght B; Meeusen R
    PLoS One; 2019; 14(4):e0214711. PubMed ID: 30943265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a Low Profile, Unpowered Ankle Exoskeleton That Fits Under Clothes: Overcoming Practical Barriers to Widespread Societal Adoption.
    Yandell MB; Tacca JR; Zelik KE
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):712-723. PubMed ID: 30872237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Characterization of a Quasi-Passive Pneumatic Foot-Ankle Prosthesis.
    Lee JD; Mooney LM; Rouse EJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):823-831. PubMed ID: 28463204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a powered ankle-foot prosthetic system during walking.
    Ferris AE; Aldridge JM; Rábago CA; Wilken JM
    Arch Phys Med Rehabil; 2012 Nov; 93(11):1911-8. PubMed ID: 22732369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variable Cadence Walking and Ground Adaptive Standing With a Powered Ankle Prosthesis.
    Shultz AH; Lawson BE; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):495-505. PubMed ID: 25955789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power.
    Galle S; Malcolm P; Collins SH; De Clercq D
    J Neuroeng Rehabil; 2017 Apr; 14(1):35. PubMed ID: 28449684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proportional Joint-Moment Control for Instantaneously Adaptive Ankle Exoskeleton Assistance.
    Gasparri GM; Luque J; Lerner ZF
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):751-759. PubMed ID: 30908231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking.
    Malcolm P; Quesada RE; Caputo JM; Collins SH
    J Neuroeng Rehabil; 2015 Feb; 12():21. PubMed ID: 25889201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and characterization of a biologically inspired quasi-passive prosthetic ankle-foot.
    Mooney LM; Lai CH; Rouse EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1611-7. PubMed ID: 25570281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A powered prosthetic ankle joint for walking and running.
    Grimmer M; Holgate M; Holgate R; Boehler A; Ward J; Hollander K; Sugar T; Seyfarth A
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):141. PubMed ID: 28105953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility study of transtibial amputee walking using a powered prosthetic foot.
    Grimmer M; Holgate M; Ward J; Boehler A; Seyfarth A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1118-1123. PubMed ID: 28813971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a Purely Mechanical Sensor-Controller Integrated System for Walking Assistance on an Ankle-Foot Exoskeleton.
    Wang X; Guo S; Qu H; Song M
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31331126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking.
    Kim M; Collins SH
    J Neuroeng Rehabil; 2015 May; 12():43. PubMed ID: 25928176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmental contributions to sagittal-plane whole-body angular momentum when using powered compared to passive ankle-foot prostheses on ramps.
    Pickle NT; Silverman AK; Wilken JM; Fey NP
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1609-1614. PubMed ID: 28814050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heuristic-Based Ankle Exoskeleton Control for Co-Adaptive Assistance of Human Locomotion.
    Jackson RW; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2059-2069. PubMed ID: 31425120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of a powered ankle-foot prosthesis reduces the metabolic cost of uphill walking and improves leg work symmetry in people with transtibial amputations.
    Montgomery JR; Grabowski AM
    J R Soc Interface; 2018 Aug; 15(145):. PubMed ID: 30158189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A universal ankle-foot prosthesis emulator for human locomotion experiments.
    Caputo JM; Collins SH
    J Biomech Eng; 2014 Mar; 136(3):035002. PubMed ID: 24337103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.