These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 33347606)
1. Neuroplasticity in N-methyl-d-aspartic acid receptor signaling in subregions of the rat rostral ventrolateral medulla following sedentary versus physically active conditions. Fyk-Kolodziej BE; Ghoddoussi F; Mueller PJ J Comp Neurol; 2021 Jun; 529(9):2311-2331. PubMed ID: 33347606 [TBL] [Abstract][Full Text] [Related]
4. Sedentary conditions and enhanced responses to GABA in the RVLM: role of the contralateral RVLM. Dombrowski MD; Mueller PJ Am J Physiol Regul Integr Comp Physiol; 2017 Aug; 313(2):R158-R168. PubMed ID: 28490450 [TBL] [Abstract][Full Text] [Related]
5. Physical activity correlates with glutamate receptor gene expression in spinally-projecting RVLM neurons: a laser capture microdissection study. Subramanian M; Holt AG; Mueller PJ Brain Res; 2014 Oct; 1585():51-62. PubMed ID: 25173073 [TBL] [Abstract][Full Text] [Related]
6. Sex-dependent development of enhanced sympathoexcitation in sedentary versus physically active rats. Matus LN; Flessland OD; Mueller PJ J Physiol; 2021 Sep; 599(17):4101-4116. PubMed ID: 34258769 [TBL] [Abstract][Full Text] [Related]
7. Sympathoexcitation by hypothalamic paraventricular nucleus neurons projecting to the rostral ventrolateral medulla. Koba S; Hanai E; Kumada N; Kataoka N; Nakamura K; Watanabe T J Physiol; 2018 Oct; 596(19):4581-4595. PubMed ID: 30019338 [TBL] [Abstract][Full Text] [Related]
8. Altered Differential Control of Sympathetic Outflow Following Sedentary Conditions: Role of Subregional Neuroplasticity in the RVLM. Subramanian M; Mueller PJ Front Physiol; 2016; 7():290. PubMed ID: 27486405 [TBL] [Abstract][Full Text] [Related]
9. Sex differences in NMDA GluN1 plasticity in rostral ventrolateral medulla neurons containing corticotropin-releasing factor type 1 receptor following slow-pressor angiotensin II hypertension. Van Kempen TA; Dodos M; Woods C; Marques-Lopes J; Justice NJ; Iadecola C; Pickel VM; Glass MJ; Milner TA Neuroscience; 2015 Oct; 307():83-97. PubMed ID: 26306872 [TBL] [Abstract][Full Text] [Related]
10. Tonic glutamatergic input in the rostral ventrolateral medulla is increased in rats with chronic heart failure. Wang WZ; Gao L; Wang HJ; Zucker IH; Wang W Hypertension; 2009 Feb; 53(2):370-4. PubMed ID: 19029485 [TBL] [Abstract][Full Text] [Related]
11. Glutamatergic receptor activation in the rostral ventrolateral medulla mediates the sympathoexcitatory response to hyperinsulinemia. Bardgett ME; McCarthy JJ; Stocker SD Hypertension; 2010 Feb; 55(2):284-90. PubMed ID: 20065145 [TBL] [Abstract][Full Text] [Related]
12. Sedentary Conditions Promote Subregionally Specific Changes in Brain-Derived Neurotrophic Factor in the Rostral Ventrolateral Medulla. Fyk-Kolodziej BE; Mueller PJ Front Physiol; 2021; 12():756542. PubMed ID: 34721079 [TBL] [Abstract][Full Text] [Related]
13. Exercise training attenuates increases in lumbar sympathetic nerve activity produced by stimulation of the rostral ventrolateral medulla. Mueller PJ J Appl Physiol (1985); 2007 Feb; 102(2):803-13. PubMed ID: 17053106 [TBL] [Abstract][Full Text] [Related]
14. (In)activity-related neuroplasticity in brainstem control of sympathetic outflow: unraveling underlying molecular, cellular, and anatomical mechanisms. Mischel NA; Subramanian M; Dombrowski MD; Llewellyn-Smith IJ; Mueller PJ Am J Physiol Heart Circ Physiol; 2015 Jul; 309(2):H235-43. PubMed ID: 25957223 [TBL] [Abstract][Full Text] [Related]
15. Exercise training lowers the enhanced tonically active glutamatergic input to the rostral ventrolateral medulla in hypertensive rats. Zha YP; Wang YK; Deng Y; Zhang RW; Tan X; Yuan WJ; Deng XM; Wang WZ CNS Neurosci Ther; 2013 Apr; 19(4):244-51. PubMed ID: 23521912 [TBL] [Abstract][Full Text] [Related]
16. Immunoreactivity for the NMDA NR1 subunit in bulbospinal catecholamine and serotonin neurons of rat ventral medulla. Llewellyn-Smith IJ; Mueller PJ Auton Neurosci; 2013 Oct; 177(2):114-22. PubMed ID: 23562375 [TBL] [Abstract][Full Text] [Related]
17. Central blockade of the AT1 receptor attenuates pressor effects via reduction of glutamate release and downregulation of NMDA/AMPA receptors in the rostral ventrolateral medulla of rats with stress-induced hypertension. Zhou X; Yang H; Song X; Wang J; Shen L; Wang J Hypertens Res; 2019 Aug; 42(8):1142-1151. PubMed ID: 30842613 [TBL] [Abstract][Full Text] [Related]
18. Nitric oxide modulates blood pressure through NMDA receptors in the rostral ventrolateral medulla of conscious rats. Machado NL; Silva FC; Chianca DA; de Menezes RC Brain Res; 2016 Jul; 1643():159-67. PubMed ID: 27150817 [TBL] [Abstract][Full Text] [Related]
19. A glutamatergic pathway between the medial habenula and the rostral ventrolateral medulla may regulate cardiovascular function in a rat model of post-traumatic stress disorder. Wu YY; Zeng CH; Cai KY; Zheng C; Wang MY; Zhang HH Chin J Physiol; 2023; 66(5):326-334. PubMed ID: 37929343 [TBL] [Abstract][Full Text] [Related]
20. Exercise training upregulates Nrf2 protein in the rostral ventrolateral medulla of mice with heart failure. Wafi AM; Yu L; Gao L; Zucker IH J Appl Physiol (1985); 2019 Nov; 127(5):1349-1359. PubMed ID: 31556830 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]