BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 33347711)

  • 21. The future of nanomedicine in optimising the treatment of inflammatory bowel disease.
    Mohan LJ; Daly JS; Ryan BM; Ramtoola Z
    Scand J Gastroenterol; 2019 Jan; 54(1):18-26. PubMed ID: 30678499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aptamer-guided nanomedicines for anticancer drug delivery.
    Alshaer W; Hillaireau H; Fattal E
    Adv Drug Deliv Rev; 2018 Sep; 134():122-137. PubMed ID: 30267743
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges.
    Laurent S; Saei AA; Behzadi S; Panahifar A; Mahmoudi M
    Expert Opin Drug Deliv; 2014 Sep; 11(9):1449-70. PubMed ID: 24870351
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications.
    Wicki A; Witzigmann D; Balasubramanian V; Huwyler J
    J Control Release; 2015 Feb; 200():138-57. PubMed ID: 25545217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Liposomes as multifaceted delivery system in the treatment of osteoporosis.
    Nirwan N; Nikita ; Sultana Y; Vohora D
    Expert Opin Drug Deliv; 2021 Jun; 18(6):761-775. PubMed ID: 33406945
    [No Abstract]   [Full Text] [Related]  

  • 26. Actively targeted nanomedicines for precision cancer therapy: Concept, construction, challenges and clinical translation.
    Gu W; Meng F; Haag R; Zhong Z
    J Control Release; 2021 Jan; 329():676-695. PubMed ID: 33022328
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Linkers: The key elements for the creation of efficient nanotherapeutics.
    Hassanzadeh P; Atyabi F; Dinarvand R
    J Control Release; 2018 Jan; 270():260-267. PubMed ID: 29246786
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insight into nanoparticle cellular uptake and intracellular targeting.
    Yameen B; Choi WI; Vilos C; Swami A; Shi J; Farokhzad OC
    J Control Release; 2014 Sep; 190():485-99. PubMed ID: 24984011
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanomedicines in Diagnosis and Treatment of Cancer: An Update.
    Haider N; Fatima S; Taha M; Rizwanullah M; Firdous J; Ahmad R; Mazhar F; Khan MA
    Curr Pharm Des; 2020; 26(11):1216-1231. PubMed ID: 32188379
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calcium phosphate-based nanosystems for advanced targeted nanomedicine.
    Degli Esposti L; Carella F; Adamiano A; Tampieri A; Iafisco M
    Drug Dev Ind Pharm; 2018 Aug; 44(8):1223-1238. PubMed ID: 29528248
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cardiovascular therapies utilizing targeted delivery of nanomedicines and aptamers.
    Tan KX; Pan S; Jeevanandam J; Danquah MK
    Int J Pharm; 2019 Mar; 558():413-425. PubMed ID: 30660748
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inorganic-organic Synergy in Nano-hybrids Makes a New Class of Drug with Targeted Delivery: Glutamate Functionalization of Iron Nanoparticles for Potential Bone Marrow Delivery and X-ray Dynamic Therapy.
    Ghosh R; Mondal S; Mukherjee D; Adhikari A; Bhattacharyya M; Pal SK
    Curr Drug Deliv; 2022; 19(10):991-1000. PubMed ID: 35346006
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combining Nanomedicine and Immunotherapy.
    Shi Y; Lammers T
    Acc Chem Res; 2019 Jun; 52(6):1543-1554. PubMed ID: 31120725
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoparticle delivery systems, general approaches, and their implementation in multiple myeloma.
    de la Puente P; Azab AK
    Eur J Haematol; 2017 Jun; 98(6):529-541. PubMed ID: 28208215
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emerging potential of stimulus-responsive nanosized anticancer drug delivery systems for systemic applications.
    Ruttala HB; Ramasamy T; Madeshwaran T; Hiep TT; Kandasamy U; Oh KT; Choi HG; Yong CS; Kim JO
    Arch Pharm Res; 2018 Feb; 41(2):111-129. PubMed ID: 29214601
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanomedical engineering: shaping future nanomedicines.
    Luo D; Carter KA; Lovell JF
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(2):169-88. PubMed ID: 25377691
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DePEGylation strategies to increase cancer nanomedicine efficacy.
    Kong L; Campbell F; Kros A
    Nanoscale Horiz; 2019 Mar; 4(2):378-387. PubMed ID: 32254090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ligand-Switchable Micellar Nanocarriers for Prolonging Circulation Time and Enhancing Targeting Efficiency.
    Cheng T; Zhang Y; Liu J; Ding Y; Ou H; Huang F; An Y; Liu Y; Liu J; Shi L
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5296-5304. PubMed ID: 29338179
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Macrophages as Active Nanocarriers for Targeted Early and Adjuvant Cancer Chemotherapy.
    Si J; Shao S; Shen Y; Wang K
    Small; 2016 Oct; 12(37):5108-5119. PubMed ID: 27560388
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Current status and future directions of hepatocellular carcinoma-targeted nanoparticles and nanomedicine.
    Kumar V; Rahman M; Gahtori P; Al-Abbasi F; Anwar F; Kim HS
    Expert Opin Drug Deliv; 2021 Jun; 18(6):673-694. PubMed ID: 33295218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.