These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33347861)

  • 1. The metabolic importance of the overlooked asparaginase II pathway.
    Cooper AJL; Dorai T; Pinto JT; Denton TT
    Anal Biochem; 2022 May; 644():114084. PubMed ID: 33347861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ω-Amidase: an underappreciated, but important enzyme in L-glutamine and L-asparagine metabolism; relevance to sulfur and nitrogen metabolism, tumor biology and hyperammonemic diseases.
    Cooper AJ; Shurubor YI; Dorai T; Pinto JT; Isakova EP; Deryabina YI; Denton TT; Krasnikov BF
    Amino Acids; 2016 Jan; 48(1):1-20. PubMed ID: 26259930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of omega-amidase as an enzyme metabolically linked to asparagine transamination in Arabidopsis.
    Zhang Q; Marsolais F
    Phytochemistry; 2014 Mar; 99():36-43. PubMed ID: 24461228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the putative tumor suppressor Nit2 as omega-amidase, an enzyme metabolically linked to glutamine and asparagine transamination.
    Krasnikov BF; Chien CH; Nostramo R; Pinto JT; Nieves E; Callaway M; Sun J; Huebner K; Cooper AJ
    Biochimie; 2009 Sep; 91(9):1072-80. PubMed ID: 19595734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asparagine catabolism in rat liver mitochondria.
    Moraga-Amador DA; MacPhee-Quiggley KM; Keefer JF; Schuster SM
    Arch Biochem Biophys; 1989 Jan; 268(1):314-26. PubMed ID: 2912380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asparagine and glutamine metabolism in Rhodopseudomonas acidophila.
    Herbert RA; Macfarlane GT
    Arch Microbiol; 1980 Dec; 128(2):233-8. PubMed ID: 7212928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asparagine transaminase from rat liver.
    Cooper AJ
    J Biol Chem; 1977 Mar; 252(6):2032-8. PubMed ID: 14957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Arabidopsis serine:glyoxylate aminotransferase, AGT1, as an asparagine aminotransferase.
    Zhang Q; Lee J; Pandurangan S; Clarke M; Pajak A; Marsolais F
    Phytochemistry; 2013 Jan; 85():30-5. PubMed ID: 23098902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insights into the catalytic active site and activity of human Nit2/ω-amidase: kinetic assay and molecular dynamics simulation.
    Chien CH; Gao QZ; Cooper AJ; Lyu JH; Sheu SY
    J Biol Chem; 2012 Jul; 287(31):25715-26. PubMed ID: 22674578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic Heterogeneity, Plasticity, and Adaptation to "Glutamine Addiction" in Cancer Cells: The Role of Glutaminase and the GTωA [Glutamine Transaminase-ω-Amidase (Glutaminase II)] Pathway.
    Cooper AJL; Dorai T; Pinto JT; Denton TT
    Biology (Basel); 2023 Aug; 12(8):. PubMed ID: 37627015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assay and purification of omega-amidase/Nit2, a ubiquitously expressed putative tumor suppressor, that catalyzes the deamidation of the alpha-keto acid analogues of glutamine and asparagine.
    Krasnikov BF; Nostramo R; Pinto JT; Cooper AJ
    Anal Biochem; 2009 Aug; 391(2):144-50. PubMed ID: 19464248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High activities of glutamine transaminase K (dichlorovinylcysteine beta-lyase) and omega-amidase in the choroid plexus of rat brain.
    Cooper AJ; Abraham DG; Gelbard AS; Lai JC; Petito CK
    J Neurochem; 1993 Nov; 61(5):1731-41. PubMed ID: 8228989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The metabolic importance of the glutaminase II pathway in normal and cancerous cells.
    Dorai T; Pinto JT; Denton TT; Krasnikov BF; Cooper AJL
    Anal Biochem; 2022 May; 644():114083. PubMed ID: 33352190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of glycine metabolism in mouse lymphoma cells either sensitive or resistant to L-asparaginase.
    Keefer JF; Moraga DA; Schuster SM
    Biochem Pharmacol; 1985 Feb; 34(4):559-65. PubMed ID: 3918541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asparaginase and asparagine transaminase in soybean leaves and root nodules.
    Streeter JG
    Plant Physiol; 1977 Aug; 60(2):235-9. PubMed ID: 16660067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. As Extracellular Glutamine Levels Decline, Asparagine Becomes an Essential Amino Acid.
    Pavlova NN; Hui S; Ghergurovich JM; Fan J; Intlekofer AM; White RM; Rabinowitz JD; Thompson CB; Zhang J
    Cell Metab; 2018 Feb; 27(2):428-438.e5. PubMed ID: 29337136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Asparagine metabolism in mycobacteria. II. -- Asparagine hydrolysis and aspartohydroxamic acid formation and hydrolysis catalysed by M. fortuitum, M. phlei and BCG asparaginases (author's transl)].
    Andrejew A; Orfanelli MT; Desbordes J
    Ann Microbiol (Paris); 1975; 126(2):151-60. PubMed ID: 239619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asparagine metabolism in chicks and rats.
    Penner M; Coon CN
    Poult Sci; 1980 May; 59(5):1109-13. PubMed ID: 6104809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The differential ability of asparagine and glutamine in promoting the closed/active enzyme conformation rationalizes the Wolinella succinogenes L-asparaginase substrate specificity.
    Nguyen HA; Durden DL; Lavie A
    Sci Rep; 2017 Jan; 7():41643. PubMed ID: 28139703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and function of the thermostable L-asparaginase from Thermococcus kodakarensis.
    Guo J; Coker AR; Wood SP; Cooper JB; Chohan SM; Rashid N; Akhtar M
    Acta Crystallogr D Struct Biol; 2017 Nov; 73(Pt 11):889-895. PubMed ID: 29095161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.