These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 33348018)
1. Critical P Urca T; Gefen E; Ribak G Comp Biochem Physiol A Mol Integr Physiol; 2021 Apr; 254():110873. PubMed ID: 33348018 [No Abstract] [Full Text] [Related]
2. Beyond aerodynamics: The critical roles of the circulatory and tracheal systems in maintaining insect wing functionality. Pass G Arthropod Struct Dev; 2018 Jul; 47(4):391-407. PubMed ID: 29859244 [TBL] [Abstract][Full Text] [Related]
3. Effects of insect body size on tracheal structure and function. Kirkton SD Adv Exp Med Biol; 2007; 618():221-8. PubMed ID: 18269200 [TBL] [Abstract][Full Text] [Related]
4. Enhancing insect flight research with a lab-on-cables. Sane SP Sci Robot; 2020 Aug; 5(45):. PubMed ID: 33022634 [TBL] [Abstract][Full Text] [Related]
5. Symmorphosis and the insect respiratory system: a comparison between flight and hopping muscle. Snelling EP; Seymour RS; Runciman S; Matthews PG; White CR J Exp Biol; 2012 Sep; 215(Pt 18):3324-33. PubMed ID: 22735345 [TBL] [Abstract][Full Text] [Related]
6. Good vibrations for flapping-wing flyers. Karásek M Sci Robot; 2020 Sep; 5(46):. PubMed ID: 32999051 [TBL] [Abstract][Full Text] [Related]
7. Solving the mystery of insect flight. Dickinson M Sci Am; 2001 Jun; 284(6):48-57. PubMed ID: 11396342 [No Abstract] [Full Text] [Related]
8. Relationship of flight and reproduction in beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), a migrant lacking the oogenesis-flight syndrome. Jiang XF; Luo LZ; Sappington TW J Insect Physiol; 2010 Nov; 56(11):1631-7. PubMed ID: 20561527 [TBL] [Abstract][Full Text] [Related]
9. On flapping flight mechanisms and their applications to wind and marine energy harvesting. Thiria B Curr Opin Insect Sci; 2018 Dec; 30():39-45. PubMed ID: 30553483 [TBL] [Abstract][Full Text] [Related]
11. X-ray computed tomography study of the flight-adapted tracheal system in the blowfly Wasserthal LT; Cloetens P; Fink RH; Wasserthal LK J Exp Biol; 2018 Jun; 221(Pt 12):. PubMed ID: 29712750 [TBL] [Abstract][Full Text] [Related]
12. A simplified dynamic model for controlled insect hovering flight and control stability analysis. Yao J; Yeo KS Bioinspir Biomim; 2019 Jul; 14(5):056005. PubMed ID: 31239412 [TBL] [Abstract][Full Text] [Related]
13. Oxygen partial pressure effects on metabolic rate and behavior of tethered flying locusts. Rascón B; Harrison JF J Insect Physiol; 2005 Nov; 51(11):1193-9. PubMed ID: 16095605 [TBL] [Abstract][Full Text] [Related]
14. Springs for wings. Alexander RM Science; 1995 Apr; 268(5207):50-1. PubMed ID: 7701341 [No Abstract] [Full Text] [Related]
15. The evolution of insect flight: implications for the evolution of the nervous system. Edwards JS Brain Behav Evol; 1997 Jul; 50(1):8-12. PubMed ID: 9209762 [TBL] [Abstract][Full Text] [Related]
16. Formulae for insect wingbeat frequency. Deakin MA J Insect Sci; 2010; 10():96. PubMed ID: 20673120 [TBL] [Abstract][Full Text] [Related]
17. Origin and transformation of the in-flight wing-coupling structure in Psocodea (Insecta: Paraneoptera). Ogawa N; Yoshizawa K J Morphol; 2018 Apr; 279(4):517-530. PubMed ID: 29226378 [TBL] [Abstract][Full Text] [Related]
18. Gliding hexapods and the origins of insect aerial behaviour. Yanoviak SP; Kaspari M; Dudley R Biol Lett; 2009 Aug; 5(4):510-2. PubMed ID: 19324632 [TBL] [Abstract][Full Text] [Related]