These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance. Dudley R J Exp Biol; 1998 Apr; 201(Pt 8):1043-50. PubMed ID: 9510518 [TBL] [Abstract][Full Text] [Related]
25. Measuring wing kinematics, flight trajectory and body attitude during forward flight and turning maneuvers in dragonflies. Wang H; Zeng L; Liu H; Yin C J Exp Biol; 2003 Feb; 206(Pt 4):745-57. PubMed ID: 12517991 [TBL] [Abstract][Full Text] [Related]
26. On the contractile mechanism of insect fibrillar flight muscle. IV. A quantitative chemo-mechanical model. Chaplain RA Biol Cybern; 1975; 18(3-4):137-53. PubMed ID: 1138985 [No Abstract] [Full Text] [Related]
28. Leg regeneration stunts wing growth and hinders flight performance in a stick insect (Sipyloidea sipylus). Maginnis TL Proc Biol Sci; 2006 Jul; 273(1595):1811-4. PubMed ID: 16790415 [TBL] [Abstract][Full Text] [Related]
29. Neurobiology and biomechanics of flight in miniature insects. Sane SP Curr Opin Neurobiol; 2016 Dec; 41():158-166. PubMed ID: 27716577 [TBL] [Abstract][Full Text] [Related]
30. Harrison JF; Waser W; Hetz SK Biol Lett; 2020 Nov; 16(11):20200548. PubMed ID: 33142085 [TBL] [Abstract][Full Text] [Related]
31. Mechanics and aerodynamics of insect flight control. Taylor GK Biol Rev Camb Philos Soc; 2001 Nov; 76(4):449-71. PubMed ID: 11762490 [TBL] [Abstract][Full Text] [Related]
32. A spatially explicit model of muscle contraction explains a relationship between activation phase, power and ATP utilization in insect flight. Tanner BC; Regnier M; Daniel TL J Exp Biol; 2008 Jan; 211(Pt 2):180-6. PubMed ID: 18165245 [TBL] [Abstract][Full Text] [Related]
33. Flight mill performance of the lacewing Chrysoperla sinica (Neuroptera: Chrysopidae) as a function of age, temperature, and relative humidity. Liu Z; McNeil JN; Wu K J Econ Entomol; 2011 Feb; 104(1):94-100. PubMed ID: 21404845 [TBL] [Abstract][Full Text] [Related]
34. Hormonal control of migratory flight in Oncopeltus fasciatus: the effects of the corpus cardiacum, corpus allatum, and starvation on migration and reproduction. Rankin MA; Riddiford LM Gen Comp Endocrinol; 1977 Nov; 33(3):309-21. PubMed ID: 562814 [No Abstract] [Full Text] [Related]
35. Effects of body size on the oxygen sensitivity of dragonfly flight. Henry JR; Harrison JF J Exp Biol; 2014 Oct; 217(Pt 19):3447-56. PubMed ID: 25063859 [TBL] [Abstract][Full Text] [Related]
36. Scaling law and enhancement of lift generation of an insect-size hovering flexible wing. Kang CK; Shyy W J R Soc Interface; 2013 Aug; 10(85):20130361. PubMed ID: 23760300 [TBL] [Abstract][Full Text] [Related]
37. A century and a half of research on the evolution of insect flight. Alexander DE Arthropod Struct Dev; 2018 Jul; 47(4):322-327. PubMed ID: 29169955 [TBL] [Abstract][Full Text] [Related]
38. A Simple Flight Mill for the Study of Tethered Flight in Insects. Attisano A; Murphy JT; Vickers A; Moore PJ J Vis Exp; 2015 Dec; (106):e53377. PubMed ID: 26709537 [TBL] [Abstract][Full Text] [Related]
39. Tracheal remodelling in response to hypoxia. Centanin L; Gorr TA; Wappner P J Insect Physiol; 2010 May; 56(5):447-54. PubMed ID: 19482033 [TBL] [Abstract][Full Text] [Related]
40. Changes in respiratory structure and function during post-diapause development in the alfalfa leafcutting bee, Megachile rotundata. Owings AA; Yocum GD; Rinehart JP; Kemp WP; Greenlee KJ J Insect Physiol; 2014 Jul; 66():20-7. PubMed ID: 24819205 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]