These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 33348128)

  • 1. Electrical stimulation of hindlimb skeletal muscle has beneficial effects on sublesional bone in a rat model of spinal cord injury.
    Zhao W; Peng Y; Hu Y; Guo XE; Li J; Cao J; Pan J; Feng JQ; Cardozo C; Jarvis J; Bauman WA; Qin W
    Bone; 2021 Mar; 144():115825. PubMed ID: 33348128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testosterone dose dependently prevents bone and muscle loss in rodents after spinal cord injury.
    Yarrow JF; Conover CF; Beggs LA; Beck DT; Otzel DM; Balaez A; Combs SM; Miller JR; Ye F; Aguirre JI; Neuville KG; Williams AA; Conrad BP; Gregory CM; Wronski TJ; Bose PK; Borst SE
    J Neurotrauma; 2014 May; 31(9):834-45. PubMed ID: 24378197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The central nervous system (CNS)-independent anti-bone-resorptive activity of muscle contraction and the underlying molecular and cellular signatures.
    Qin W; Sun L; Cao J; Peng Y; Collier L; Wu Y; Creasey G; Li J; Qin Y; Jarvis J; Bauman WA; Zaidi M; Cardozo C
    J Biol Chem; 2013 May; 288(19):13511-21. PubMed ID: 23530032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locomotor training with adjuvant testosterone preserves cancellous bone and promotes muscle plasticity in male rats after severe spinal cord injury.
    Yarrow JF; Kok HJ; Phillips EG; Conover CF; Lee J; Bassett TE; Buckley KH; Reynolds MC; Wnek RD; Otzel DM; Chen C; Jiron JM; Graham ZA; Cardozo C; Vandenborne K; Bose PK; Aguirre JI; Borst SE; Ye F
    J Neurosci Res; 2020 May; 98(5):843-868. PubMed ID: 31797423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sclerostin Antibody Reverses the Severe Sublesional Bone Loss in Rats After Chronic Spinal Cord Injury.
    Zhao W; Li X; Peng Y; Qin Y; Pan J; Li J; Xu A; Ominsky MS; Cardozo C; Feng JQ; Ke HZ; Bauman WA; Qin W
    Calcif Tissue Int; 2018 Oct; 103(4):443-454. PubMed ID: 29931461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of spinal cord injury on osteoblastogenesis, osteoclastogenesis and gene expression profiling in osteoblasts in young rats.
    Jiang SD; Jiang LS; Dai LY
    Osteoporos Int; 2007 Mar; 18(3):339-49. PubMed ID: 17036173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mice with sclerostin gene deletion are resistant to the severe sublesional bone loss induced by spinal cord injury.
    Qin W; Zhao W; Li X; Peng Y; Harlow LM; Li J; Qin Y; Pan J; Wu Y; Ran L; Ke HZ; Cardozo CP; Bauman WA
    Osteoporos Int; 2016 Dec; 27(12):3627-3636. PubMed ID: 27436301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Soluble Activin Receptor IIB Fails to Prevent Muscle Atrophy in a Mouse Model of Spinal Cord Injury.
    Graham ZA; Collier L; Peng Y; Saéz JC; Bauman WA; Qin W; Cardozo CP
    J Neurotrauma; 2016 Jun; 33(12):1128-35. PubMed ID: 26529111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sclerostin inhibition prevents spinal cord injury-induced cancellous bone loss.
    Beggs LA; Ye F; Ghosh P; Beck DT; Conover CF; Balaez A; Miller JR; Phillips EG; Zheng N; Williams AA; Aguirre JI; Wronski TJ; Bose PK; Borst SE; Yarrow JF
    J Bone Miner Res; 2015 Apr; 30(4):681-9. PubMed ID: 25359699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of pharmacologic sclerostin inhibition or testosterone administration on soleus muscle atrophy in rodents after spinal cord injury.
    Phillips EG; Beggs LA; Ye F; Conover CF; Beck DT; Otzel DM; Ghosh P; Bassit ACF; Borst SE; Yarrow JF
    PLoS One; 2018; 13(3):e0194440. PubMed ID: 29579075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of motor function induced by skeletal muscle contraction in spinal cord-injured rats.
    Hayashi N; Himi N; Nakamura-Maruyama E; Okabe N; Sakamoto I; Hasegawa T; Miyamoto O
    Spine J; 2019 Jun; 19(6):1094-1105. PubMed ID: 30583107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polydatin administration attenuates the severe sublesional bone loss in mice with chronic spinal cord injury.
    Zhan J; Luo D; Zhao B; Chen S; Luan J; Luo J; Hou Y; Hou Y; Xu W; Yan W; Qi J; Li X; Zhang Q; Lin D
    Aging (Albany NY); 2022 Nov; 14(21):8856-8875. PubMed ID: 36378815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomics reveals transient and dynamic muscle fibrosis and atrophy differences following spinal cord injury in rats.
    Kok HJ; Fletcher DB; Oster JC; Conover CF; Barton ER; Yarrow JF
    J Cachexia Sarcopenia Muscle; 2024 Aug; 15(4):1309-1323. PubMed ID: 38764311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal cord injury causes bone loss through peroxisome proliferator-activated receptor-γ and Wnt signalling.
    Yan J; Li B; Chen JW; Jiang SD; Jiang LS
    J Cell Mol Med; 2012 Dec; 16(12):2968-77. PubMed ID: 22947224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effect of Functional Electrical Stimulation and Therapeutic Exercises on Trunk Muscle Tone and Dynamic Sitting Balance in Persons with Chronic Spinal Cord Injury: A Crossover Trial.
    Bergmann M; Zahharova A; Reinvee M; Asser T; Gapeyeva H; Vahtrik D
    Medicina (Kaunas); 2019 Sep; 55(10):. PubMed ID: 31546613
    [No Abstract]   [Full Text] [Related]  

  • 16. Testosterone Plus Finasteride Prevents Bone Loss without Prostate Growth in a Rodent Spinal Cord Injury Model.
    Yarrow JF; Phillips EG; Conover CF; Bassett TE; Chen C; Teurlings T; Vasconez A; Alerte J; Prock H; Jiron JM; Flores M; Aguirre JI; Borst SE; Ye F
    J Neurotrauma; 2017 Nov; 34(21):2972-2981. PubMed ID: 28338402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of spinal cord injury and hindlimb immobilization on sublesional and supralesional bones in young growing rats.
    Liu D; Zhao CQ; Li H; Jiang SD; Jiang LS; Dai LY
    Bone; 2008 Jul; 43(1):119-125. PubMed ID: 18482879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of low intensity vibration on bone and muscle in rats with spinal cord injury.
    Bramlett HM; Dietrich WD; Marcillo A; Mawhinney LJ; Furones-Alonso O; Bregy A; Peng Y; Wu Y; Pan J; Wang J; Guo XE; Bauman WA; Cardozo C; Qin W
    Osteoporos Int; 2014 Sep; 25(9):2209-19. PubMed ID: 24861907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Longitudinal Examination of Bone Loss in Male Rats After Moderate-Severe Contusion Spinal Cord Injury.
    Otzel DM; Conover CF; Ye F; Phillips EG; Bassett T; Wnek RD; Flores M; Catter A; Ghosh P; Balaez A; Petusevsky J; Chen C; Gao Y; Zhang Y; Jiron JM; Bose PK; Borst SE; Wronski TJ; Aguirre JI; Yarrow JF
    Calcif Tissue Int; 2019 Jan; 104(1):79-91. PubMed ID: 30218117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sclerostin antibody preserves the morphology and structure of osteocytes and blocks the severe skeletal deterioration after motor-complete spinal cord injury in rats.
    Qin W; Li X; Peng Y; Harlow LM; Ren Y; Wu Y; Li J; Qin Y; Sun J; Zheng S; Brown T; Feng JQ; Ke HZ; Bauman WA; Cardozo CC
    J Bone Miner Res; 2015 Nov; 30(11):1994-2004. PubMed ID: 25974843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.