BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 33348185)

  • 1. Exergy analysis of a whole-crop safflower biorefinery: A step towards reducing agricultural wastes in a sustainable manner.
    Khounani Z; Hosseinzadeh-Bandbafha H; Nazemi F; Shaeifi M; Karimi K; Tabatabaei M; Aghbashlo M; Lam SS
    J Environ Manage; 2021 Feb; 279():111822. PubMed ID: 33348185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Safflower-based biorefinery producing a broad spectrum of biofuels and biochemicals: A life cycle assessment perspective.
    Hosseinzadeh-Bandbafha H; Nazemi F; Khounani Z; Ghanavati H; Shafiei M; Karimi K; Lam SS; Aghbashlo M; Tabatabaei M
    Sci Total Environ; 2022 Jan; 802():149842. PubMed ID: 34455274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agricultural waste management strategies for environmental sustainability.
    Koul B; Yakoob M; Shah MP
    Environ Res; 2022 Apr; 206():112285. PubMed ID: 34710442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a paddy-based biorefinery approach toward improvement of biomass utilization for more bioproducts.
    Le TM; Tran UP; Duong YH; Nguyen KT; Tran VT; Le PK
    Chemosphere; 2022 Feb; 289():133249. PubMed ID: 34906533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of chemicals and utilities in-house improves the environmental sustainability of phytoplankton-based biorefinery.
    Kiehbadroudinezhad M; Hosseinzadeh-Bandbafha H; Karimi K; Madadi M; Chisti Y; Peng W; Liu D; Tabatabaei M; Aghbashlo M
    Sci Total Environ; 2023 Nov; 899():165751. PubMed ID: 37499830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustainability assessment of biofuel and value-added product from organic fraction of municipal solid waste.
    Musharavati F; Ahmad A; Javed MH; Sajid K; Naqvi M
    Environ Res; 2024 Apr; 246():118121. PubMed ID: 38184063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungal biorefinery for sustainable resource recovery from waste.
    Chatterjee S; Venkata Mohan S
    Bioresour Technol; 2022 Feb; 345():126443. PubMed ID: 34852279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioethanol fermentation as alternative valorization route of agricultural digestate according to a biorefinery approach.
    Sambusiti C; Monlau F; Barakat A
    Bioresour Technol; 2016 Jul; 212():289-295. PubMed ID: 27115615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exergy analyses of biogas production from microalgae biomass via anaerobic digestion.
    Xiao C; Liao Q; Fu Q; Huang Y; Xia A; Shen W; Chen H; Zhu X
    Bioresour Technol; 2019 Oct; 289():121709. PubMed ID: 31276992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review.
    Yaashikaa PR; Senthil Kumar P; Varjani S
    Bioresour Technol; 2022 Jan; 343():126126. PubMed ID: 34673193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biorefineries in circular bioeconomy: A comprehensive review.
    Ubando AT; Felix CB; Chen WH
    Bioresour Technol; 2020 Mar; 299():122585. PubMed ID: 31901305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustainability metrics of pretreatment processes in a waste derived lignocellulosic biomass biorefinery.
    Islam MK; Wang H; Rehman S; Dong C; Hsu HY; Lin CSK; Leu SY
    Bioresour Technol; 2020 Feb; 298():122558. PubMed ID: 31862395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a Methodology for the Synthesis of Biorefineries Based on Incremental Economic and Exergetic Return on Investment.
    Romero-Perez JC; Vergara L; González-Delgado ÁD
    ACS Omega; 2021 Mar; 6(9):6112-6123. PubMed ID: 33718702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of lignocellulosic biorefineries for the sustainable production of biofuels: Towards circular bioeconomy.
    Yadav A; Sharma V; Tsai ML; Chen CW; Sun PP; Nargotra P; Wang JX; Dong CD
    Bioresour Technol; 2023 Aug; 381():129145. PubMed ID: 37169207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biphasic pretreatment excels over conventional sulfuric acid in pinewood biorefinery: An environmental analysis.
    Khounani Z; Abdul Razak NN; Hosseinzadeh-Bandbafha H; Madadi M; Sun F; Mohammadi P; Mahlia TMI; Aghbashlo M; Tabatabaei M
    Environ Res; 2024 May; 248():118286. PubMed ID: 38280524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated biorefinery approach for the valorization of water hyacinth towards circular bioeconomy: a review.
    Bajpai S; Nemade PR
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):39494-39536. PubMed ID: 36787076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Populus as a lignocellulosic feedstock for bioethanol.
    Porth I; El-Kassaby YA
    Biotechnol J; 2015 Apr; 10(4):510-24. PubMed ID: 25676392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insect biorefinery: A circular economy concept for biowaste conversion to value-added products.
    Kee PE; Cheng YS; Chang JS; Yim HS; Tan JCY; Lam SS; Lan JC; Ng HS; Khoo KS
    Environ Res; 2023 Mar; 221():115284. PubMed ID: 36640934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resource recovery from residual household waste: An application of exergy flow analysis and exergetic life cycle assessment.
    Laner D; Rechberger H; De Soete W; De Meester S; Astrup TF
    Waste Manag; 2015 Dec; 46():653-67. PubMed ID: 26384560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of biorefineries based on experimental data: production of bioethanol, biogas, syngas, and electricity using coffee-cut stems as raw material.
    Aristizábal-Marulanda V; Solarte-Toro JC; Cardona Alzate CA
    Environ Sci Pollut Res Int; 2021 May; 28(19):24590-24604. PubMed ID: 32594433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.