These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 3334844)
1. Dibasic amino acid interactions with Na+-independent transport system asc in horse erythrocytes. Kinetic evidence of functional and structural homology with Na+-dependent system ASC. Fincham DA; Mason DK; Young JD Biochim Biophys Acta; 1988 Jan; 937(1):184-94. PubMed ID: 3334844 [TBL] [Abstract][Full Text] [Related]
2. Characterization of a novel variant of amino acid transport system asc in erythrocytes from Przewalski's horse (Equus przewalskii). Fincham DA; Ellory JC; Young JD Can J Physiol Pharmacol; 1992 Aug; 70(8):1117-27. PubMed ID: 1473044 [TBL] [Abstract][Full Text] [Related]
3. Heterogeneity of amino acid transport in horse erythrocytes: a detailed kinetic analysis of inherited transport variation. Fincham DA; Mason DK; Paterson JY; Young JD J Physiol; 1987 Aug; 389():385-409. PubMed ID: 3681732 [TBL] [Abstract][Full Text] [Related]
4. Topographical similarities between harmaline inhibition sites on Na+-dependent amino acid transport system ASC in human erythrocytes and Na+-independent system asc in horse erythrocytes. Young JD; Mason DK; Fincham DA J Biol Chem; 1988 Jan; 263(1):140-3. PubMed ID: 3121605 [TBL] [Abstract][Full Text] [Related]
5. Cation and harmaline interactions with Na(+)-independent dibasic amino acid transport system y+ in human erythrocytes and in erythrocytes from a primitive vertebrate the pacific hagfish (Eptatretus stouti). Young JD; Fincham DA; Harvey CM Biochim Biophys Acta; 1991 Nov; 1070(1):111-8. PubMed ID: 1751517 [TBL] [Abstract][Full Text] [Related]
6. Red-cell amino acid transport. Evidence for the presence of system ASC in mature human red blood cells. Young JD; Wolowyk MW; Jones SM; Ellory JC Biochem J; 1983 Nov; 216(2):349-57. PubMed ID: 6661202 [TBL] [Abstract][Full Text] [Related]
7. Amino acid transport in human and in sheep erythrocytes. Young JD; Jones SE; Ellory JC Proc R Soc Lond B Biol Sci; 1980 Sep; 209(1176):355-75. PubMed ID: 6109287 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of transport system b0,+ in blastocysts by inorganic and organic cations yields insight into the structure of its amino acid receptor site. Van Winkle LJ; Campione AL; Gorman JM Biochim Biophys Acta; 1990 Jun; 1025(2):215-24. PubMed ID: 2114171 [TBL] [Abstract][Full Text] [Related]
9. Discrimination of Na+-independent transport systems L, T, and asc in erythrocytes. Na+ independence of the latter a consequence of cell maturation? Vadgama JV; Christensen HN J Biol Chem; 1985 Mar; 260(5):2912-21. PubMed ID: 3919011 [TBL] [Abstract][Full Text] [Related]
10. Na-independent and Na-dependent transport of neutral amino acids in the human red blood cell. Rosenberg R Acta Physiol Scand; 1982 Dec; 116(4):321-30. PubMed ID: 7170995 [TBL] [Abstract][Full Text] [Related]
11. Characterization of a novel Na+-independent amino acid transporter in horse erythrocytes. Fincham DA; Mason DK; Young JD Biochem J; 1985 Apr; 227(1):13-20. PubMed ID: 3994678 [TBL] [Abstract][Full Text] [Related]
12. Basolateral amino acid transport systems in the perfused exocrine pancreas: sodium-dependency and kinetic interactions between influx and efflux mechanisms. Mann GE; Peran S Biochim Biophys Acta; 1986 Jun; 858(2):263-74. PubMed ID: 3087423 [TBL] [Abstract][Full Text] [Related]
13. Substrate specificity of amino acid transport in sheep erythrocytes. Young JD; Ellory JC Biochem J; 1977 Jan; 162(1):33-8. PubMed ID: 849280 [TBL] [Abstract][Full Text] [Related]
14. Characteristics of acidic, basic and neutral amino acid transport in the perfused rat hindlimb. Hundal HS; Rennie MJ; Watt PW J Physiol; 1989 Jan; 408():93-114. PubMed ID: 2506342 [TBL] [Abstract][Full Text] [Related]
15. The characterisation of two partially purified systems for Na+-dependent amino acid transport. Watts C; Wheeler KP Biochim Biophys Acta; 1980 Nov; 602(2):446-59. PubMed ID: 7426656 [TBL] [Abstract][Full Text] [Related]
16. Expression of Na(+)-independent amino acid transport in Xenopus laevis oocytes by injection of rabbit kidney cortex mRNA. Bertran J; Werner A; Stange G; Markovich D; Biber J; Testar X; Zorzano A; Palacin M; Murer H Biochem J; 1992 Feb; 281 ( Pt 3)(Pt 3):717-23. PubMed ID: 1536650 [TBL] [Abstract][Full Text] [Related]
17. Characterization of cationic amino acid transport systems in rat erythrocytes: lack of effect of uraemia on L-arginine influx. Brunini TM; Yaqoob MM; Roberts NB; Ellory JC; Moss MB; Siqueira MA; Mann GE; Mendes Ribeiro AC Clin Exp Pharmacol Physiol; 2006 Aug; 33(8):702-7. PubMed ID: 16895543 [TBL] [Abstract][Full Text] [Related]
18. Genetic control of amino acid transport in sheep erythrocytes. Young JD; Tucker EM; Kilgour L Biochem Genet; 1982 Aug; 20(7-8):723-31. PubMed ID: 7138497 [TBL] [Abstract][Full Text] [Related]
19. Identification of a new transport system (y+L) in human erythrocytes that recognizes lysine and leucine with high affinity. Devés R; Chavez P; Boyd CA J Physiol; 1992 Aug; 454():491-501. PubMed ID: 1474499 [TBL] [Abstract][Full Text] [Related]
20. Development of system B0,+ and a broad-scope Na(+)-dependent transporter of zwitterionic amino acids in preimplantation mouse conceptuses. Van Winkle LJ; Campione AL; Farrington BH Biochim Biophys Acta; 1990 Jun; 1025(2):225-33. PubMed ID: 2114172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]