These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 33348482)
1. Groundwater discharges as a source of phytoestrogens and other agriculturally derived contaminants to streams. Thompson TJ; Briggs MA; Phillips PJ; Blazer VS; Smalling KL; Kolpin DW; Wagner T Sci Total Environ; 2021 Feb; 755(Pt 1):142873. PubMed ID: 33348482 [TBL] [Abstract][Full Text] [Related]
2. Spatiotemporal variation in occurrence and co-occurrence of pesticides, hormones, and other organic contaminants in rivers in the Chesapeake Bay Watershed, United States. McClure CM; Smalling KL; Blazer VS; Sperry AJ; Schall MK; Kolpin DW; Phillips PJ; Hladik ML; Wagner T Sci Total Environ; 2020 Aug; 728():138765. PubMed ID: 32344224 [TBL] [Abstract][Full Text] [Related]
3. Environmental and anthropogenic drivers of contaminants in agricultural watersheds with implications for land management. Smalling KL; Devereux OH; Gordon SE; Phillips PJ; Blazer VS; Hladik ML; Kolpin DW; Meyer MT; Sperry AJ; Wagner T Sci Total Environ; 2021 Jun; 774():145687. PubMed ID: 33609846 [TBL] [Abstract][Full Text] [Related]
4. Phytoestrogens and mycotoxins in Iowa streams: an examination of underinvestigated compounds in agricultural basins. Kolpin DW; Hoerger CC; Meyer MT; Wettstein FE; Hubbard LE; Bucheli TD J Environ Qual; 2010; 39(6):2089-99. PubMed ID: 21284307 [TBL] [Abstract][Full Text] [Related]
5. Sources, occurrence and predicted aquatic impact of legacy and contemporary pesticides in streams. McKnight US; Rasmussen JJ; Kronvang B; Binning PJ; Bjerg PL Environ Pollut; 2015 May; 200():64-76. PubMed ID: 25697475 [TBL] [Abstract][Full Text] [Related]
6. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry. Ritter L; Solomon K; Sibley P; Hall K; Keen P; Mattu G; Linton B J Toxicol Environ Health A; 2002 Jan; 65(1):1-142. PubMed ID: 11809004 [TBL] [Abstract][Full Text] [Related]
7. Focused groundwater controlled feedbacks into the hyporheic zone during baseflow recession. Malzone JM; Lowry CS Ground Water; 2015; 53(2):217-26. PubMed ID: 24684212 [TBL] [Abstract][Full Text] [Related]
8. Agricultural pesticides and selected degradation products in five tidal regions and the main stem of Chesapeake Bay, USA. McConnell LL; Rice CP; Hapeman CJ; Drakeford L; Harman-Fetcho JA; Bialek K; Fulton MH; Leight AK; Allen G Environ Toxicol Chem; 2007 Dec; 26(12):2567-78. PubMed ID: 18020682 [TBL] [Abstract][Full Text] [Related]
9. A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions. Conant B; Cherry JA; Gillham RW J Contam Hydrol; 2004 Sep; 73(1-4):249-79. PubMed ID: 15336797 [TBL] [Abstract][Full Text] [Related]
10. Submarine groundwater discharge as a source of pharmaceutical and caffeine residues in coastal ecosystem: Bay of Puck, southern Baltic Sea case study. Szymczycha B; Borecka M; Białk-Bielińska A; Siedlewicz G; Pazdro K Sci Total Environ; 2020 Apr; 713():136522. PubMed ID: 32019013 [TBL] [Abstract][Full Text] [Related]
11. Linking denitrification and pesticide transformation potentials with community ecology and groundwater discharge in hyporheic sediments in a lowland stream. Bech TB; Hellal J; Badawi N; Jakobsen R; Aamand J Water Res; 2023 Aug; 242():120174. PubMed ID: 37343333 [TBL] [Abstract][Full Text] [Related]
13. The statistical power to detect regional temporal trends in riverine contaminants in the Chesapeake Bay Watershed, USA. Wagner T; McLaughlin P; Smalling K; Breitmeyer S; Gordon S; Noe GB Sci Total Environ; 2022 Mar; 812():152435. PubMed ID: 34942241 [TBL] [Abstract][Full Text] [Related]
14. Heterogeneous hyporheic zone dechlorination of a TCE groundwater plume discharging to an urban river reach. Freitas JG; Rivett MO; Roche RS; Durrant Neé Cleverly M; Walker C; Tellam JH Sci Total Environ; 2015 Feb; 505():236-52. PubMed ID: 25461025 [TBL] [Abstract][Full Text] [Related]
15. Phytoestrogens in the environment, II: microbiological degradation of phytoestrogens and the response of fathead minnows to degradate exposure. Kelly MM; Fleischhacker NT; Rearick DC; Arnold WA; Schoenfuss HL; Novak PJ Environ Toxicol Chem; 2014 Mar; 33(3):560-6. PubMed ID: 24249429 [TBL] [Abstract][Full Text] [Related]
16. Chemicals of emerging concern in the Great Lakes Basin: an analysis of environmental exposures. Klecka G; Persoon C; Currie R Rev Environ Contam Toxicol; 2010; 207():1-93. PubMed ID: 20652664 [TBL] [Abstract][Full Text] [Related]
17. Factors Affecting Nitrate Concentrations in Stream Base Flow. Wherry SA; Tesoriero AJ; Terziotti S Environ Sci Technol; 2021 Jan; 55(2):902-911. PubMed ID: 33356185 [TBL] [Abstract][Full Text] [Related]
18. Distribution of pesticides and some of their transformation products in a small lentic waterbody: Fish, water, and sediment contamination in an agricultural watershed. Slaby S; Le Cor F; Dufour V; Auger L; Pasquini L; Cardoso O; Curtet L; Baudoin JM; Wiest L; Vulliet E; Feidt C; Dauchy X; Banas D Environ Pollut; 2022 Jan; 292(Pt B):118403. PubMed ID: 34699920 [TBL] [Abstract][Full Text] [Related]
19. A long-term, multitrophic level study to assess pulp and paper mill effluent effects on aquatic communities in four US receiving waters: characteristics of the study streams, sample sites, mills, and mill effluents. Hall TJ; Ragsdale RL; Arthurs WJ; Ikoma J; Borton DL; Cook DL Integr Environ Assess Manag; 2009 Apr; 5(2):199-218. PubMed ID: 19063588 [TBL] [Abstract][Full Text] [Related]
20. Variable Background Flow on Aquatic Toxicant Exposure Alters Foraging Patterns on Crayfish. Alacantara F; Weighman KK; Moore PA Bull Environ Contam Toxicol; 2019 Nov; 103(5):663-669. PubMed ID: 31473775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]