These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 33348484)

  • 1. Carbon storage and sediment trapping by Egeria densa Planch., a globally invasive, freshwater macrophyte.
    Drexler JZ; Khanna S; Lacy JR
    Sci Total Environ; 2021 Feb; 755(Pt 1):142602. PubMed ID: 33348484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The long-term nutrient accumulation with respect to anthropogenic impacts in the sediments from two freshwater marshes (Xianghai Wetlands, Northeast China).
    Wang GP; Liu JS; Tang J
    Water Res; 2004 Dec; 38(20):4462-74. PubMed ID: 15556221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resilience of an aquatic macrophyte to an anthropogenically induced environmental stressor in a Ramsar wetland of southern Chile.
    Jaramillo E; Duarte C; Labra FA; Lagos NA; Peruzzo B; Silva R; Velasquez C; Manzano M; Melnick D
    Ambio; 2019 Mar; 48(3):304-312. PubMed ID: 29971664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying how changing mangrove cover affects ecosystem carbon storage in coastal wetlands.
    Charles SP; Kominoski JS; Armitage AR; Guo H; Weaver CA; Pennings SC
    Ecology; 2020 Feb; 101(2):e02916. PubMed ID: 31646613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of hydraulic restoration of San Pablo Marsh, California.
    Grismer ME; Kollar J; Syder J
    Environ Monit Assess; 2004 Nov; 98(1-3):69-92. PubMed ID: 15473530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climatic variability, hydrologic anomaly, and methane emission can turn productive freshwater marshes into net carbon sources.
    Chu H; Gottgens JF; Chen J; Sun G; Desai AR; Ouyang Z; Shao C; Czajkowski K
    Glob Chang Biol; 2015 Mar; 21(3):1165-81. PubMed ID: 25287051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating tidal marsh sustainability in the face of sea-level rise: a hybrid modeling approach applied to San Francisco Bay.
    Stralberg D; Brennan M; Callaway JC; Wood JK; Schile LM; Jongsomjit D; Kelly M; Parker VT; Crooks S
    PLoS One; 2011; 6(11):e27388. PubMed ID: 22110638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impacts of land reclamation on tidal marsh 'blue carbon' stocks.
    Ewers Lewis CJ; Baldock JA; Hawke B; Gadd PS; Zawadzki A; Heijnis H; Jacobsen GE; Rogers K; Macreadie PI
    Sci Total Environ; 2019 Jul; 672():427-437. PubMed ID: 30965258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salinity pulses interact with seasonal dry-down to increase ecosystem carbon loss in marshes of the Florida Everglades.
    Wilson BJ; Servais S; Mazzei V; Kominoski JS; Hu M; Davis SE; Gaiser E; Sklar F; Bauman L; Kelly S; Madden C; Richards J; Rudnick D; Stachelek J; Troxler TG
    Ecol Appl; 2018 Dec; 28(8):2092-2108. PubMed ID: 30376192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon Sequestration in Tidal Salt Marshes of the Northeast United States.
    Drake K; Halifax H; Adamowicz SC; Craft C
    Environ Manage; 2015 Oct; 56(4):998-1008. PubMed ID: 26108413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant biomass and rates of carbon dioxide uptake are enhanced by successful restoration of tidal connectivity in salt marshes.
    Wang F; Eagle M; Kroeger KD; Spivak AC; Tang J
    Sci Total Environ; 2021 Jan; 750():141566. PubMed ID: 32882493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrology and invasive macrophytes may mediate freshwater mussel density and population size structure in a hydropeaking reservoir.
    Moore TP; Clearwater SJ; Duggan IC; Collier KJ
    Sci Total Environ; 2022 Dec; 851(Pt 1):158124. PubMed ID: 35995151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tidal marsh restoration enhances sediment accretion and carbon accumulation in the Stillaguamish River estuary, Washington.
    Poppe KL; Rybczyk JM
    PLoS One; 2021; 16(9):e0257244. PubMed ID: 34506575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benthic bacterial and fungal productivity and carbon turnover in a freshwater marsh.
    Buesing N; Gessner MO
    Appl Environ Microbiol; 2006 Jan; 72(1):596-605. PubMed ID: 16391096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterns of short-term sedimentation in a freshwater created marsh.
    Harter SK; Mitsch WJ
    J Environ Qual; 2003; 32(1):325-34. PubMed ID: 12549573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China.
    Yuan J; Ding W; Liu D; Kang H; Freeman C; Xiang J; Lin Y
    Glob Chang Biol; 2015 Apr; 21(4):1567-80. PubMed ID: 25367159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competing effects of vegetation density on sedimentation in deltaic marshes.
    Xu Y; Esposito CR; Beltrán-Burgos M; Nepf HM
    Nat Commun; 2022 Aug; 13(1):4641. PubMed ID: 35941151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estuarine submerged aquatic vegetation habitat provides organic carbon storage across a shifting landscape.
    Hillmann ER; Rivera-Monroy VH; Nyman JA; La Peyre MK
    Sci Total Environ; 2020 May; 717():137217. PubMed ID: 32070897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sea-level rise thresholds for stability of salt marshes in a riverine versus a marine dominated estuary.
    Wu W; Biber P; Mishra DR; Ghosh S
    Sci Total Environ; 2020 May; 718():137181. PubMed ID: 32105940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of two submerged macrophyte species on microbes and metazoans in rooftop water-storage ponds with different labile carbon loadings.
    Maceda-Veiga A; MacNally R; Rodríguez S; Szabo S; Peeters ETHM; Ruff T; Salvadó H
    Water Res; 2022 Mar; 211():117999. PubMed ID: 35042074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.