These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 33348713)
1. Opening a Novel Biosynthetic Pathway to Dihydroxyacetone and Glycerol in Guitart Font E; Sprenger GA Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33348713 [TBL] [Abstract][Full Text] [Related]
2. Improvement of L-phenylalanine production from glycerol by recombinant Escherichia coli strains: the role of extra copies of glpK, glpX, and tktA genes. Gottlieb K; Albermann C; Sprenger GA Microb Cell Fact; 2014 Jul; 13(1):96. PubMed ID: 25012491 [TBL] [Abstract][Full Text] [Related]
3. Deletion of four genes in Escherichia coli enables preferential consumption of xylose and secretion of glucose. Diaz CAC; Bennett RK; Papoutsakis ET; Antoniewicz MR Metab Eng; 2019 Mar; 52():168-177. PubMed ID: 30529131 [TBL] [Abstract][Full Text] [Related]
4. Role of GldA in dihydroxyacetone and methylglyoxal metabolism of Escherichia coli K12. Subedi KP; Kim I; Kim J; Min B; Park C FEMS Microbiol Lett; 2008 Feb; 279(2):180-7. PubMed ID: 18179582 [TBL] [Abstract][Full Text] [Related]
5. Dihydroxyacetone production in an engineered Escherichia coli through expression of Corynebacterium glutamicum dihydroxyacetone phosphate dephosphorylase. Jain VK; Tear CJ; Lim CY Enzyme Microb Technol; 2016 May; 86():39-44. PubMed ID: 26992791 [TBL] [Abstract][Full Text] [Related]
6. Novel listerial glycerol dehydrogenase- and phosphoenolpyruvate-dependent dihydroxyacetone kinase system connected to the pentose phosphate pathway. Monniot C; Zébré AC; Aké FM; Deutscher J; Milohanic E J Bacteriol; 2012 Sep; 194(18):4972-82. PubMed ID: 22773791 [TBL] [Abstract][Full Text] [Related]
7. The pentose phosphate pathway of cellulolytic clostridia relies on 6-phosphofructokinase instead of transaldolase. Koendjbiharie JG; Hon S; Pabst M; Hooftman R; Stevenson DM; Cui J; Amador-Noguez D; Lynd LR; Olson DG; van Kranenburg R J Biol Chem; 2020 Feb; 295(7):1867-1878. PubMed ID: 31871051 [TBL] [Abstract][Full Text] [Related]
8. Synergetic Fermentation of Glucose and Glycerol for High-Yield N-Acetylglucosamine Production in Wang K; Wang X; Luo H; Wang Y; Wang Y; Tu T; Qin X; Bai Y; Huang H; Yao B; Su X; Zhang J Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054959 [TBL] [Abstract][Full Text] [Related]
9. Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities. Zhao J; Baba T; Mori H; Shimizu K Appl Microbiol Biotechnol; 2004 Mar; 64(1):91-8. PubMed ID: 14661115 [TBL] [Abstract][Full Text] [Related]
10. Enhanced production of dihydroxyacetone from glycerol by overexpression of glycerol dehydrogenase in an alcohol dehydrogenase-deficient mutant of Gluconobacter oxydans. Li MH; Wu J; Liu X; Lin JP; Wei DZ; Chen H Bioresour Technol; 2010 Nov; 101(21):8294-9. PubMed ID: 20576428 [TBL] [Abstract][Full Text] [Related]
11. Fructose-6-phosphate aldolase is a novel class I aldolase from Escherichia coli and is related to a novel group of bacterial transaldolases. Schurmann M; Sprenger GA J Biol Chem; 2001 Apr; 276(14):11055-61. PubMed ID: 11120740 [TBL] [Abstract][Full Text] [Related]
13. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli. Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031 [TBL] [Abstract][Full Text] [Related]
14. Redirection of the central metabolism of Klebsiella pneumoniae towards dihydroxyacetone production. Sun S; Wang Y; Shu L; Lu X; Wang Q; Zhu C; Shi J; Lye GJ; Baganz F; Hao J Microb Cell Fact; 2021 Jun; 20(1):123. PubMed ID: 34187467 [TBL] [Abstract][Full Text] [Related]
15. Genetic evidence of a major role for glucose-6-phosphate dehydrogenase in nitrogen fixation and dark growth of the cyanobacterium Nostoc sp. strain ATCC 29133. Summers ML; Wallis JG; Campbell EL; Meeks JC J Bacteriol; 1995 Nov; 177(21):6184-94. PubMed ID: 7592384 [TBL] [Abstract][Full Text] [Related]
16. Engineering a glycerol utilization pathway in Corynebacterium glutamicum for succinate production under O2 deprivation. Wang C; Cai H; Chen Z; Zhou Z Biotechnol Lett; 2016 Oct; 38(10):1791-7. PubMed ID: 27395064 [TBL] [Abstract][Full Text] [Related]
17. Experimental evolution of a novel pathway for glycerol dissimilation in Escherichia coli. Jin RZ; Tang JC; Lin EC J Mol Evol; 1983; 19(6):429-36. PubMed ID: 6361270 [TBL] [Abstract][Full Text] [Related]
18. Accumulation of glucose 6-phosphate or fructose 6-phosphate is responsible for destabilization of glucose transporter mRNA in Escherichia coli. Morita T; El-Kazzaz W; Tanaka Y; Inada T; Aiba H J Biol Chem; 2003 May; 278(18):15608-14. PubMed ID: 12578824 [TBL] [Abstract][Full Text] [Related]
19. Deletion mapping of zwf, the gene for a constitutive enzyme, glucose 6-phosphate dehydrogenase in Escherichia coli. Fraenkel DG; Banerjee S Genetics; 1972 Aug; 71(4):481-9. PubMed ID: 4560065 [TBL] [Abstract][Full Text] [Related]
20. Impact of expression of EMP enzymes on glucose metabolism in Zymomonas mobilis. Chen RR; Agrawal M; Mao Z Appl Biochem Biotechnol; 2013 Jun; 170(4):805-18. PubMed ID: 23613118 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]