BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 33348713)

  • 1. Opening a Novel Biosynthetic Pathway to Dihydroxyacetone and Glycerol in
    Guitart Font E; Sprenger GA
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33348713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of L-phenylalanine production from glycerol by recombinant Escherichia coli strains: the role of extra copies of glpK, glpX, and tktA genes.
    Gottlieb K; Albermann C; Sprenger GA
    Microb Cell Fact; 2014 Jul; 13(1):96. PubMed ID: 25012491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deletion of four genes in Escherichia coli enables preferential consumption of xylose and secretion of glucose.
    Diaz CAC; Bennett RK; Papoutsakis ET; Antoniewicz MR
    Metab Eng; 2019 Mar; 52():168-177. PubMed ID: 30529131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of GldA in dihydroxyacetone and methylglyoxal metabolism of Escherichia coli K12.
    Subedi KP; Kim I; Kim J; Min B; Park C
    FEMS Microbiol Lett; 2008 Feb; 279(2):180-7. PubMed ID: 18179582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dihydroxyacetone production in an engineered Escherichia coli through expression of Corynebacterium glutamicum dihydroxyacetone phosphate dephosphorylase.
    Jain VK; Tear CJ; Lim CY
    Enzyme Microb Technol; 2016 May; 86():39-44. PubMed ID: 26992791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel listerial glycerol dehydrogenase- and phosphoenolpyruvate-dependent dihydroxyacetone kinase system connected to the pentose phosphate pathway.
    Monniot C; Zébré AC; Aké FM; Deutscher J; Milohanic E
    J Bacteriol; 2012 Sep; 194(18):4972-82. PubMed ID: 22773791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pentose phosphate pathway of cellulolytic clostridia relies on 6-phosphofructokinase instead of transaldolase.
    Koendjbiharie JG; Hon S; Pabst M; Hooftman R; Stevenson DM; Cui J; Amador-Noguez D; Lynd LR; Olson DG; van Kranenburg R
    J Biol Chem; 2020 Feb; 295(7):1867-1878. PubMed ID: 31871051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergetic Fermentation of Glucose and Glycerol for High-Yield N-Acetylglucosamine Production in
    Wang K; Wang X; Luo H; Wang Y; Wang Y; Tu T; Qin X; Bai Y; Huang H; Yao B; Su X; Zhang J
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities.
    Zhao J; Baba T; Mori H; Shimizu K
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):91-8. PubMed ID: 14661115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced production of dihydroxyacetone from glycerol by overexpression of glycerol dehydrogenase in an alcohol dehydrogenase-deficient mutant of Gluconobacter oxydans.
    Li MH; Wu J; Liu X; Lin JP; Wei DZ; Chen H
    Bioresour Technol; 2010 Nov; 101(21):8294-9. PubMed ID: 20576428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional and metabolic effects of adaptive glycerol kinase (GLPK) mutants in Escherichia coli.
    Applebee MK; Joyce AR; Conrad TM; Pettigrew DW; Palsson BØ
    J Biol Chem; 2011 Jul; 286(26):23150-9. PubMed ID: 21550976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fructose-6-phosphate aldolase is a novel class I aldolase from Escherichia coli and is related to a novel group of bacterial transaldolases.
    Schurmann M; Sprenger GA
    J Biol Chem; 2001 Apr; 276(14):11055-61. PubMed ID: 11120740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redirection of the central metabolism of Klebsiella pneumoniae towards dihydroxyacetone production.
    Sun S; Wang Y; Shu L; Lu X; Wang Q; Zhu C; Shi J; Lye GJ; Baganz F; Hao J
    Microb Cell Fact; 2021 Jun; 20(1):123. PubMed ID: 34187467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic evidence of a major role for glucose-6-phosphate dehydrogenase in nitrogen fixation and dark growth of the cyanobacterium Nostoc sp. strain ATCC 29133.
    Summers ML; Wallis JG; Campbell EL; Meeks JC
    J Bacteriol; 1995 Nov; 177(21):6184-94. PubMed ID: 7592384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering a glycerol utilization pathway in Corynebacterium glutamicum for succinate production under O2 deprivation.
    Wang C; Cai H; Chen Z; Zhou Z
    Biotechnol Lett; 2016 Oct; 38(10):1791-7. PubMed ID: 27395064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental evolution of a novel pathway for glycerol dissimilation in Escherichia coli.
    Jin RZ; Tang JC; Lin EC
    J Mol Evol; 1983; 19(6):429-36. PubMed ID: 6361270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation of glucose 6-phosphate or fructose 6-phosphate is responsible for destabilization of glucose transporter mRNA in Escherichia coli.
    Morita T; El-Kazzaz W; Tanaka Y; Inada T; Aiba H
    J Biol Chem; 2003 May; 278(18):15608-14. PubMed ID: 12578824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deletion mapping of zwf, the gene for a constitutive enzyme, glucose 6-phosphate dehydrogenase in Escherichia coli.
    Fraenkel DG; Banerjee S
    Genetics; 1972 Aug; 71(4):481-9. PubMed ID: 4560065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of expression of EMP enzymes on glucose metabolism in Zymomonas mobilis.
    Chen RR; Agrawal M; Mao Z
    Appl Biochem Biotechnol; 2013 Jun; 170(4):805-18. PubMed ID: 23613118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.