BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 33348823)

  • 21. Early driver fatigue detection from electroencephalography signals using artificial neural networks.
    King LM; Nguyen HT; Lal SK
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2187-90. PubMed ID: 17945698
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals.
    Shalbaf A; Bagherzadeh S; Maghsoudi A
    Phys Eng Sci Med; 2020 Dec; 43(4):1229-1239. PubMed ID: 32926393
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep Learning for Detecting Multi-Level Driver Fatigue Using Physiological Signals: A Comprehensive Approach.
    Peivandi M; Ardabili SZ; Sheykhivand S; Danishvar S
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37837001
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Depression recognition using machine learning methods with different feature generation strategies.
    Li X; Zhang X; Zhu J; Mao W; Sun S; Wang Z; Xia C; Hu B
    Artif Intell Med; 2019 Aug; 99():101696. PubMed ID: 31606115
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phase lag index-based graph attention networks for detecting driving fatigue.
    Wang Z; Zhao Y; He Y; Zhang J
    Rev Sci Instrum; 2021 Sep; 92(9):094105. PubMed ID: 34598529
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CSF-GTNet: A Novel Multi-Dimensional Feature Fusion Network Based on Convnext-GeLU- BiLSTM for EEG-Signals-Enabled Fatigue Driving Detection.
    Gao D; Li P; Wang M; Liang Y; Liu S; Zhou J; Wang L; Zhang Y
    IEEE J Biomed Health Inform; 2024 May; 28(5):2558-2568. PubMed ID: 37022236
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-Attentive Channel-Connectivity Capsule Network for EEG-Based Driving Fatigue Detection.
    Chen C; Ji Z; Sun Y; Bezerianos A; Thakor N; Wang H
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3152-3162. PubMed ID: 37494165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cross-Subject Zero Calibration Driver's Drowsiness Detection: Exploring Spatiotemporal Image Encoding of EEG Signals for Convolutional Neural Network Classification.
    Paulo JR; Pires G; Nunes UJ
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():905-915. PubMed ID: 33979288
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Research on the Relationship between Reaction Ability and Mental State for Online Assessment of Driving Fatigue.
    Guo M; Li S; Wang L; Chai M; Chen F; Wei Y
    Int J Environ Res Public Health; 2016 Nov; 13(12):. PubMed ID: 27886139
    [No Abstract]   [Full Text] [Related]  

  • 30. Classifying Driving Fatigue by Using EEG Signals.
    Zeng C; Mu Z; Wang Q
    Comput Intell Neurosci; 2022; 2022():1885677. PubMed ID: 35371255
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition.
    Chai X; Wang Q; Zhao Y; Liu X; Bai O; Li Y
    Comput Biol Med; 2016 Dec; 79():205-214. PubMed ID: 27810626
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Epileptic seizure detection in EEG signal with GModPCA and support vector machine.
    Jaiswal AK; Banka H
    Biomed Mater Eng; 2017; 28(2):141-157. PubMed ID: 28372267
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An iterative cross-subject negative-unlabeled learning algorithm for quantifying passive fatigue.
    Foong R; Ang KK; Zhang Z; Quek C
    J Neural Eng; 2019 Aug; 16(5):056013. PubMed ID: 31141797
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN.
    Bascil MS; Tesneli AY; Temurtas F
    Australas Phys Eng Sci Med; 2016 Sep; 39(3):665-76. PubMed ID: 27376723
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated Detection of Driver Fatigue Based on AdaBoost Classifier with EEG Signals.
    Hu J
    Front Comput Neurosci; 2017; 11():72. PubMed ID: 28824409
    [No Abstract]   [Full Text] [Related]  

  • 36. Recognition of Multiclass Epileptic EEG Signals Based on Knowledge and Label Space Inductive Transfer.
    Jiang Z; Chung FL; Wang S
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):630-642. PubMed ID: 30872235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing accuracy of mental fatigue classification using advanced computational intelligence in an electroencephalography system.
    Chai R; Tran Y; Craig A; Ling SH; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1338-41. PubMed ID: 25570210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterisation of Cognitive Load Using Machine Learning Classifiers of Electroencephalogram Data.
    Wang Q; Smythe D; Cao J; Hu Z; Proctor KJ; Owens AP; Zhao Y
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896621
    [TBL] [Abstract][Full Text] [Related]  

  • 39. AGL-Net: An Efficient Neural Network for EEG-Based Driver Fatigue Detection.
    Fang W; Tang L; Pan J
    J Integr Neurosci; 2023 Oct; 22(6):146. PubMed ID: 38176922
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Information fusion and multi-classifier system for miner fatigue recognition in plateau environments based on electrocardiography and electromyography signals.
    Chen S; Xu K; Yao X; Ge J; Li L; Zhu S; Li Z
    Comput Methods Programs Biomed; 2021 Nov; 211():106451. PubMed ID: 34644668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.